鲁科版(2019) 选择性必修第二册 第1章 安培力与洛伦兹力 课时分层作业 ( 3课时,原卷版+解析版)

文档属性

名称 鲁科版(2019) 选择性必修第二册 第1章 安培力与洛伦兹力 课时分层作业 ( 3课时,原卷版+解析版)
格式 zip
文件大小 1.5MB
资源类型 教案
版本资源 鲁科版(2019)
科目 物理
更新时间 2023-02-02 17:37:50

文档简介

课时分层作业(一) 安培力及其应用
◎题组一 安培力的方向
1.在赤道上空,水平放置一根通以由西向东的电流的直导线,则此导线(  )
A.受到竖直向上的安培力
B.受到竖直向下的安培力
C.受到由南向北的安培力
D.受到由西向东的安培力
2.如图所示,磁感应强度和通电导体中的电流方向均垂直纸面向里,则关于通电导体所受磁场力,下面判断正确的是(  )
A.磁场力垂直导体,方向向左
B.磁场力垂直导体,方向向右
C.磁场力垂直导体,方向向上
D.磁场力为零
3.(2022·南昌月考)如图所示,导线框ABC由直线AB和四分之一圆弧BC组成,用柔软导线悬吊处于静止状态,经过A、C的水平线下方有垂直于ABC所在平面向里的匀强磁场,现给导线框ABC通以如图所示方向的电流,则导线框受到的安培力方向(  )
A.竖直向上 B.竖直向下
C.斜向右下 D.斜向左上
◎题组二 安培力的大小
4.如图所示,水平面内一段通电直导线平行于匀强磁场放置,当导线以左端点为轴在水平平面内转过90°时(如图中虚线所示),导线所受的安培力(  )
A.大小不变
B.大小由零逐渐增大到最大
C.大小由零先增大后减小
D.大小由最大逐渐减小到零
5.如图所示,导线框中电流为I,导线框垂直于匀强磁场放置,磁感应强度为B,AB与CD相距为d,则棒MN所受安培力大小(  )
A.F=BId
B.F=BIdsin θ
C.F=
D.F=BIdcos θ
6.(多选)(创新题)如图所示,纸面内的金属圆环中通有电流I,圆环圆心为O、半径为R,P,Q为圆环上两点,且OP垂直于OQ,磁感应强度大小为B的匀强磁场垂直于纸面向里,则(  )
A.整个圆环受到的安培力大小为2πBIR
B.整个圆环受到的安培力大小为0
C.圆弧PQ受到的安培力大小为BIR
D.圆弧PQ受到的安培力大小为BIR
◎题组三 安培力作用下导体的运动
7.如图所示,在南北方向安放的长直导线的正上方用细线悬挂一条形小磁铁,当导线中通入图示的电流I后,下列说法正确的是(  )
A.磁铁N极向里转,悬线所受的拉力小于磁铁所受的重力
B.磁铁N极向外转,悬线所受的拉力小于磁铁所受的重力
C.磁铁N极向里转,悬线所受的拉力大于磁铁所受的重力
D.磁铁N极向外转,悬线所受的拉力大于磁铁所受的重力
8.如图所示,在条形磁铁S极附近悬挂一个线圈,线圈与水平磁铁位于同一平面内,当线圈中电流沿图示方向流动时,将会出现(  )
A.线圈向磁铁平移
B.线圈远离磁铁平移
C.从上往下看,线圈顺时针转动,同时靠近磁铁
D.从上往下看,线圈逆时针转动,同时靠近磁铁
9.澳大利亚某大学制成了能把2.2 g 的弹体(包括金属杆EF的质量)加速到10 km/s的电磁炮(常规炮弹的速度约为2 km/s)。如图所示,若轨道宽为2 m,长为100 m,通过的电流为10 A,试求轨道间所加匀强磁场的磁感应强度(轨道摩擦不计)。
10.(2021·广东卷)截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线,若中心直导线通入电流I1,四根平行直导线均通入电流I2,I1 I2,电流方向如图所示,下列截面图中可能正确表示通电后长管发生形变的是(  )
A     B     C    D
11.如图所示,质量为0.12 kg的裸铜棒,长为20 cm,两头与长度均为20 cm的软导线相连,吊在B=0.5 T,方向竖直向上的匀强磁场中。现在通以恒定电流I,铜棒将向纸面里摆起,最大摆角为37°,不计空气阻力,g取10 m/s2,那么铜棒中电流的大小和方向分别为(  )
A.I=4 A,方向从a指向b
B.I=4 A,方向从b指向a
C.I=9 A,方向从a指向b
D.I=9 A,方向从b指向a
12.如图所示,在一个范围足够大、磁感应强度B=0.40 T的水平匀强磁场中,用绝缘细线将金属棒吊起使其呈水平静止状态,且金属棒与磁场方向垂直。已知金属棒长l=0.20 m,质量m=0.020 kg,g取10 m/s2。
(1)若棒中通有I=2.0 A的向左的电流,求此时金属棒受到的安培力F的大小;
(2)改变通过金属棒的电流大小,若细线拉力恰好为零,求此时棒中通有电流的大小。
13.质量为m的导体棒MN静止于宽度为l的水平导轨上,通过MN的电流为I,匀强磁场的磁感应强度为B,方向与导轨平面成θ角斜向下,如图所示,重力加速度为g,求MN所受的支持力和摩擦力的大小。
7/7课时分层作业(一) 安培力及其应用
◎题组一 安培力的方向
1.在赤道上空,水平放置一根通以由西向东的电流的直导线,则此导线(  )
A.受到竖直向上的安培力
B.受到竖直向下的安培力
C.受到由南向北的安培力
D.受到由西向东的安培力
A [赤道上空地磁场方向水平由南向北,由左手定则可确定该导线受到安培力方向竖直向上,A正确。]
2.如图所示,磁感应强度和通电导体中的电流方向均垂直纸面向里,则关于通电导体所受磁场力,下面判断正确的是(  )
A.磁场力垂直导体,方向向左
B.磁场力垂直导体,方向向右
C.磁场力垂直导体,方向向上
D.磁场力为零
D [电流方向与磁场方向平行,通电导线所受磁场力为零,故选D。]
3.(2022·南昌月考)如图所示,导线框ABC由直线AB和四分之一圆弧BC组成,用柔软导线悬吊处于静止状态,经过A、C的水平线下方有垂直于ABC所在平面向里的匀强磁场,现给导线框ABC通以如图所示方向的电流,则导线框受到的安培力方向(  )
A.竖直向上 B.竖直向下
C.斜向右下 D.斜向左上
B [导线框受到安培力的等效长度为AC的连线,根据左手定则可知,导线框受到的安培力方向竖直向下。故选B。]
◎题组二 安培力的大小
4.如图所示,水平面内一段通电直导线平行于匀强磁场放置,当导线以左端点为轴在水平平面内转过90°时(如图中虚线所示),导线所受的安培力(  )
A.大小不变
B.大小由零逐渐增大到最大
C.大小由零先增大后减小
D.大小由最大逐渐减小到零
B [B和I平行时,导线所受安培力为零,当B和I的夹角θ增大时,F安=BIlsin θ,F安增大,当B和I垂直时,F安最大,选项B正确,A、C、D错误。]
5.如图所示,导线框中电流为I,导线框垂直于匀强磁场放置,磁感应强度为B,AB与CD相距为d,则棒MN所受安培力大小(  )
A.F=BId
B.F=BIdsin θ
C.F=
D.F=BIdcos θ
C [棒MN在磁场中有效电流的长度l=,则F=BIl=,C正确。]
6.(多选)(创新题)如图所示,纸面内的金属圆环中通有电流I,圆环圆心为O、半径为R,P,Q为圆环上两点,且OP垂直于OQ,磁感应强度大小为B的匀强磁场垂直于纸面向里,则(  )
A.整个圆环受到的安培力大小为2πBIR
B.整个圆环受到的安培力大小为0
C.圆弧PQ受到的安培力大小为BIR
D.圆弧PQ受到的安培力大小为BIR
BD [根据左手定则可知,整个圆环关于圆心对称的两部分受到的安培力等大反向,受到的合力为0,B正确,A错误;圆弧PQ受到的安培力大小等于直线段PQ受到的安培力大小,为BIR,D正确,C错误。故选BD。]
◎题组三 安培力作用下导体的运动
7.如图所示,在南北方向安放的长直导线的正上方用细线悬挂一条形小磁铁,当导线中通入图示的电流I后,下列说法正确的是(  )
A.磁铁N极向里转,悬线所受的拉力小于磁铁所受的重力
B.磁铁N极向外转,悬线所受的拉力小于磁铁所受的重力
C.磁铁N极向里转,悬线所受的拉力大于磁铁所受的重力
D.磁铁N极向外转,悬线所受的拉力大于磁铁所受的重力
C [由条形磁铁的磁场分布,并由左手定则,可知导线左半部分受到安培力方向垂直纸面向外,右半部分安培力方向垂直纸面向里,由牛顿第三定律得磁铁左半部分受到安培力方向垂直纸面向里,右半部分安培力方向垂直纸面向外,因此条形磁铁N极向里转。当转过90°时导线受力竖直向上,则磁铁受力竖直向下,导致悬线所受的拉力大于磁铁所受的重力,故C正确。]
8.如图所示,在条形磁铁S极附近悬挂一个线圈,线圈与水平磁铁位于同一平面内,当线圈中电流沿图示方向流动时,将会出现(  )
A.线圈向磁铁平移
B.线圈远离磁铁平移
C.从上往下看,线圈顺时针转动,同时靠近磁铁
D.从上往下看,线圈逆时针转动,同时靠近磁铁
D [解法一:电流元法结合特殊位置法和等效法
线圈所在处的磁场向左,由左手定则可知线圈左侧受安培力向外,右侧受力向里,所以从上往下看,线圈逆时针转动,转过90°后将环形电流等效成小磁针,由安培定则知其N极向左,与条形磁体的关系为异名磁极相对,所以相互吸引。
解法二:等效法
将环形电流等效成小磁针,由安培定则知其N极向里,受到条形磁体作用后其N极要指向左侧且相互靠近,故D正确。]
9.澳大利亚某大学制成了能把2.2 g 的弹体(包括金属杆EF的质量)加速到10 km/s的电磁炮(常规炮弹的速度约为2 km/s)。如图所示,若轨道宽为2 m,长为100 m,通过的电流为10 A,试求轨道间所加匀强磁场的磁感应强度(轨道摩擦不计)。
[解析] 根据v2-v=2as得,炮弹的加速度大小为
a== m/s2=5×105 m/s2
根据牛顿第二定律F=ma得炮弹所受的安培力
F=ma=2.2×10-3×5×105 N=1.1×103 N
根据安培力公式F=IlB得B== T=55 T。
[答案] 55 T
10.(2021·广东卷)截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线,若中心直导线通入电流I1,四根平行直导线均通入电流I2,I1 I2,电流方向如图所示,下列截面图中可能正确表示通电后长管发生形变的是(  )
A     B     C    D
C [根据“同向电流相互吸引,异向电流相互排斥”的作用规律可知,左、右两导线与长管中心的长直导线相互吸引,上、下两导线与长管中心的长直导线相互排斥,C正确。]
11.如图所示,质量为0.12 kg的裸铜棒,长为20 cm,两头与长度均为20 cm的软导线相连,吊在B=0.5 T,方向竖直向上的匀强磁场中。现在通以恒定电流I,铜棒将向纸面里摆起,最大摆角为37°,不计空气阻力,g取10 m/s2,那么铜棒中电流的大小和方向分别为(  )
A.I=4 A,方向从a指向b
B.I=4 A,方向从b指向a
C.I=9 A,方向从a指向b
D.I=9 A,方向从b指向a
B [铜棒上摆的过程,根据动能定理得BIl·lsin 37°-mgl(1-cos 37°)=0,代入数据解得I=4 A,根据铜棒将向纸面里摆起可知,安培力方向向里,根据左手定则可知,电流方向从b到a。]
12.如图所示,在一个范围足够大、磁感应强度B=0.40 T的水平匀强磁场中,用绝缘细线将金属棒吊起使其呈水平静止状态,且金属棒与磁场方向垂直。已知金属棒长l=0.20 m,质量m=0.020 kg,g取10 m/s2。
(1)若棒中通有I=2.0 A的向左的电流,求此时金属棒受到的安培力F的大小;
(2)改变通过金属棒的电流大小,若细线拉力恰好为零,求此时棒中通有电流的大小。
[解析] (1)此时金属棒受到的安培力大小
F=BIl=0.16 N。
(2)悬线拉力恰好为零,金属棒沿竖直方向受重力和安培力
由金属棒静止可知安培力F′=mg
所以此时金属棒中的电流I′===2.5 A。
[答案] (1)0.16 N (2)2.5 A
13.质量为m的导体棒MN静止于宽度为l的水平导轨上,通过MN的电流为I,匀强磁场的磁感应强度为B,方向与导轨平面成θ角斜向下,如图所示,重力加速度为g,求MN所受的支持力和摩擦力的大小。
[解析] 导体棒MN处于平衡状态,注意题中磁场方向与MN是垂直的,作出其侧视图,
对MN进行受力分析,如图所示。由平衡条件有:
水平方向:Ff=Fsin θ
竖直方向:FN=Fcos θ+mg,其中F=IlB
解得:FN=IlBcos θ+mg,Ff=IlBsin θ。
[答案] IlBcos θ+mg IlBsin θ
7/7课时分层作业(二) 洛伦兹力
◎题组一 对洛伦兹力的理解
1.下列说法正确的是(  )
A.运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力的作用
B.同一电荷,以相同大小的速度进入磁场,速度方向不同时,洛伦兹力的大小不同
C.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的速度
D.洛伦兹力对带电粒子不做功
2.关于安培力和洛伦兹力,下列说法正确的是(  )
A.安培力和洛伦兹力是性质不同的两种力
B.安培力可以对通电导线做功,洛伦兹力对运动电荷一定不做功
C.运动电荷在某处不受洛伦兹力作用,则该处的磁感应强度一定为零
D.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的运动状态
3.有关电荷所受电场力和洛伦兹力的说法中,正确的是(  )
A.电荷在电场中一定受电场力的作用
B.电荷在磁场中一定受磁场力的作用
C.电荷受电场力的方向与该处的电场方向一致
D.电荷若受磁场力,则受力方向与该处的磁场方向不一定垂直
◎题组二 洛伦兹力的方向和大小
4.(多选)以下四个图是表示磁场磁感应强度B、负电荷运动方向v和磁场对负电荷洛伦兹力F的相互关系图,这四个图中画得正确的是(B、v、F两两垂直)(  )
A    B    C    D
5.来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将(  )
A.竖直向下沿直线射向地面
B.相对于预定地点,稍向东偏转
C.相对于预定地点,稍向西偏转
D.相对于预定地点,稍向北偏转
6.如图所示,一个带负电荷的物体从粗糙斜面顶端滑到斜面底端时的速度为v。若加上一个方向为垂直纸面向外的磁场,则物体滑到底端时(  )
A.v变大
B.v变小
C.v不变
D.不能确定
7.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是(  )
A.油滴必带正电荷,电荷量为
B.油滴必带正电荷,比荷=
C.油滴必带负电荷,电荷量为
D.油滴带什么电荷都可以,只要满足q=
◎题组三 带电粒子在匀强磁场中的运动
8.两相邻匀强磁场区域的磁感应强度大小不同、方向平行。一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的(  )
A.轨道半径减小,角速度增大
B.轨道半径减小,角速度减小
C.轨道半径增大,角速度增大
D.轨道半径增大,角速度减小
9.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负离子(比荷相同)以相同速率沿与x轴成30°角的方向从原点射入磁场,则正、负离子在磁场中运动时间之比为多少?
10.一个单摆摆球带正电,在水平匀强磁场中振动。振动平面与磁场垂直,如图所示 ,图中C点为摆球运动的最低点,摆球向右运动和向左运动通过C点时,以下说法正确的是(  )
A.受到的洛伦兹力相同
B.悬线对摆球的拉力相等
C.具有相同的动能
D.具有相同的速度
11.(2022·济南高二课时练习)如图所示,a和b是从A点以相同的速度垂直磁场方向射入匀强磁场的两个粒子运动的半圆形轨迹,已知两个粒子带电荷量相同,且ra=2rb,不计重力的影响,则由此可知(  )
A.两粒子均带正电质量之比=
B.两粒子均带负电,质量之比=
C.两粒子均带正电,质量之比=
D.两粒子均带负电,质量之比=
12.(2022·江西南昌检测)如图所示,表面光滑的绝缘平板水平放置在磁感应强度大小为B的匀强磁场中,磁场方向垂直于竖直面向里。平板上有一个质量为m、电荷量为q的带电粒子,初始时刻带电粒子静止在绝缘平板上,与绝缘平板左侧边缘的距离为d。在机械外力作用下,绝缘平板以速度v竖直向上做匀速直线运动,一段时间后带电粒子从绝缘平板的左侧飞出。不计带电粒子的重力。
(1)指出带电粒子的电性,并说明理由;
(2)求带电粒子对绝缘平板的最大压力。
13.如图所示,一束电子(电荷量为e)以速度v由A点垂直射入磁感应强度为B、宽度为d的有界匀强磁场中,在C点穿出磁场时的速度方向与原来电子的入射方向的夹角为θ=30°,则电子的质量是多少,电子穿过磁场的时间是多少?
5/7课时分层作业(二) 洛伦兹力
◎题组一 对洛伦兹力的理解
1.下列说法正确的是(  )
A.运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力的作用
B.同一电荷,以相同大小的速度进入磁场,速度方向不同时,洛伦兹力的大小不同
C.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的速度
D.洛伦兹力对带电粒子不做功
D [运动电荷在磁场中所受的洛伦兹力F=qvBsin θ,所以F的大小不但与q、v、B有关系,还与v的方向与B方向的夹角θ有关系,当θ=0°或180°时,F=0,当θ=90°时,F最大,所以A、B错误;又洛伦兹力与粒子的速度始终垂直,所以洛伦兹力对带电粒子不做功,粒子的动能也就不变,但粒子速度方向要变,所以C错误,D正确。]
2.关于安培力和洛伦兹力,下列说法正确的是(  )
A.安培力和洛伦兹力是性质不同的两种力
B.安培力可以对通电导线做功,洛伦兹力对运动电荷一定不做功
C.运动电荷在某处不受洛伦兹力作用,则该处的磁感应强度一定为零
D.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的运动状态
B [安培力和洛伦兹力都是磁场力,A错误;洛伦兹力永远与电荷运动方向垂直,所以洛伦兹力不做功,安培力是洛伦兹力的宏观表现,它虽然对引起电流的定向移动的电荷不做功,但对导线是可以做功的,B正确;电荷运动方向与磁感线方向在同一直线上时,运动电荷不受洛伦兹力作用,而此处磁感应强度不为零,C错误;洛伦兹力不改变带电粒子的速度大小,但改变速度的方向,D错误。]
3.有关电荷所受电场力和洛伦兹力的说法中,正确的是(  )
A.电荷在电场中一定受电场力的作用
B.电荷在磁场中一定受磁场力的作用
C.电荷受电场力的方向与该处的电场方向一致
D.电荷若受磁场力,则受力方向与该处的磁场方向不一定垂直
A [电荷在电场中一定受到电场力作用,A正确;电荷在磁场中不一定受洛伦兹力,当其静止时一定没有洛伦兹力,而运动的电荷,当速度方向与磁场方向平行时,没有洛伦兹力作用,B错误;正电荷所受电场力方向一定与该处电场强度方向相同,而负电荷所受电场力方向则与该处电场方向相反,C错误;电荷所受的洛伦兹力与磁场及运动速度构成的平面垂直,所以电荷所受的洛伦兹力一定与磁场方向垂直,D错误。]
◎题组二 洛伦兹力的方向和大小
4.(多选)以下四个图是表示磁场磁感应强度B、负电荷运动方向v和磁场对负电荷洛伦兹力F的相互关系图,这四个图中画得正确的是(B、v、F两两垂直)(  )
A    B    C    D
ABC [由左手定则可知四指指向正电荷运动的方向,当负电荷在运动时,四指所指的方向应与负电荷运动方向相反。故A、B、C正确,D错误。]
5.来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将(  )
A.竖直向下沿直线射向地面
B.相对于预定地点,稍向东偏转
C.相对于预定地点,稍向西偏转
D.相对于预定地点,稍向北偏转
B [质子带正电,地球表面的地磁场方向由南向北,根据左手定则可判定,质子自赤道上空的某一点竖直下落的过程中受到洛伦兹力的方向向东,故正确选项为B。]
6.如图所示,一个带负电荷的物体从粗糙斜面顶端滑到斜面底端时的速度为v。若加上一个方向为垂直纸面向外的磁场,则物体滑到底端时(  )
A.v变大
B.v变小
C.v不变
D.不能确定
B [根据左手定则,带负电荷的物体受到的洛伦兹力垂直斜面向下,因此增大了物体对斜面的正压力,即斜面对物体的支持力N变大,由滑动摩擦力公式f=μN知,斜面对物体的摩擦阻力增大,物体下滑时的加速度减小,滑到底端时的速度将比没有加磁场时要小。故B正确。]
7.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是(  )
A.油滴必带正电荷,电荷量为
B.油滴必带正电荷,比荷=
C.油滴必带负电荷,电荷量为
D.油滴带什么电荷都可以,只要满足q=
A [油滴水平向右匀速直线运动,其所受洛伦兹力必向上与重力平衡,故带正电,由mg=qv0B得其电荷量q=,A正确。]
◎题组三 带电粒子在匀强磁场中的运动
8.两相邻匀强磁场区域的磁感应强度大小不同、方向平行。一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的(  )
A.轨道半径减小,角速度增大
B.轨道半径减小,角速度减小
C.轨道半径增大,角速度增大
D.轨道半径增大,角速度减小
D [因洛伦兹力不做功,故带电粒子从较强磁场区域进入到较弱的磁场区域后,其速度大小不变,由r=知,轨道半径增大;由角速度ω=知,角速度减小,选项D正确。]
9.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负离子(比荷相同)以相同速率沿与x轴成30°角的方向从原点射入磁场,则正、负离子在磁场中运动时间之比为多少?
[解析] 由题意,作出离子运动的轨迹,如图所示。t1=T=·,t2=T=·,所以t2∶t1=2∶1。
[答案] 2∶1
10.一个单摆摆球带正电,在水平匀强磁场中振动。振动平面与磁场垂直,如图所示 ,图中C点为摆球运动的最低点,摆球向右运动和向左运动通过C点时,以下说法正确的是(  )
A.受到的洛伦兹力相同
B.悬线对摆球的拉力相等
C.具有相同的动能
D.具有相同的速度
C [摆球摆动过程中只有重力做功,洛伦兹力和线的拉力均不做功。因此通过C点时速率相同,方向相反,所受洛伦兹力大小相等、方向相反, 选项A、D错误,C正确;再对球在C点应用牛顿第二定律可判断选项B错误。]
11.(2022·济南高二课时练习)如图所示,a和b是从A点以相同的速度垂直磁场方向射入匀强磁场的两个粒子运动的半圆形轨迹,已知两个粒子带电荷量相同,且ra=2rb,不计重力的影响,则由此可知(  )
A.两粒子均带正电质量之比=
B.两粒子均带负电,质量之比=
C.两粒子均带正电,质量之比=
D.两粒子均带负电,质量之比=
B [两粒子进入磁场后均向下偏转,可知在A点均受到向下的洛伦兹力,由左手定则可知,两个粒子均带负电,选项A、C错误;在磁场中由洛伦兹力提供向心力,则有qvB=m得m=,因两粒子进入磁场的速度相同,电荷量也相同,又在同一磁场中运动,故==,选项B正确,D错误。故选B。]
12.(2022·江西南昌检测)如图所示,表面光滑的绝缘平板水平放置在磁感应强度大小为B的匀强磁场中,磁场方向垂直于竖直面向里。平板上有一个质量为m、电荷量为q的带电粒子,初始时刻带电粒子静止在绝缘平板上,与绝缘平板左侧边缘的距离为d。在机械外力作用下,绝缘平板以速度v竖直向上做匀速直线运动,一段时间后带电粒子从绝缘平板的左侧飞出。不计带电粒子的重力。
(1)指出带电粒子的电性,并说明理由;
(2)求带电粒子对绝缘平板的最大压力。
[解析] (1)带电粒子带正电,因为它从平板左侧飞出,所以它受到的洛伦兹力方向水平向左,由左手定则可判断它带正电。
(2)设带电粒子向运动的加速度为a,则qvB=ma
设它向左运动即将脱离平板时的速度大小为vx,则v=2ad
此时,带电粒子对平板的压力最大,设为FN,则竖直方向二力平衡得FN=qvxB
解得FN=。
[答案] (1)带电粒子带正电,因为它从平板左侧飞出,所以它受到的洛伦兹力方向水平向左,由左手定则可判断它带正电 
(2)FN=
13.如图所示,一束电子(电荷量为e)以速度v由A点垂直射入磁感应强度为B、宽度为d的有界匀强磁场中,在C点穿出磁场时的速度方向与原来电子的入射方向的夹角为θ=30°,则电子的质量是多少,电子穿过磁场的时间是多少?
[解析] 电子在磁场中运动,只受洛伦兹力F作用,故其轨迹AC是圆周的一部分,又因为F垂直于v,故圆心在电子进入和穿出磁场时所受的洛伦兹力指向的交点上,如图中的O点。由几何知识可知,所对圆心角为θ=30°,OC为半径r,
则r==2d
由r=得m=
由于所对圆心角是30°,因此穿过磁场的时间为t=·T=T
又T=
故t=·=。
[答案]  
5/7课时分层作业(三) 洛伦兹力的应用
◎题组一 显像管
1.如图所示,将一阴极射线管置于一通电螺线管的正上方且在同一水平面内,则阴极射线将(  )
A.向外偏转
B.向里偏转
C.向上偏转
D.向下偏转
2.显像管的原理示意图如图所示,当没有磁场时电子束打在荧光屏正中的O点。安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转。设垂直纸面向里的磁场方向为正方向,如果要使电子束打在荧光屏上的位置由P点逐渐移动到Q点,下列磁场能够使电子束发生上述偏转的是(  )
A     B     C     D
◎题组二 质谱仪
3.质谱仪主要由加速电场和偏转磁场组成,其原理图如图。设想有一个静止的带电粒子P(不计重力),经电压为U的电场加速后,垂直进入磁感应强度为B的匀强磁场中,最后打到底片上的D点,设OD=x,则下图中能正确反映x2与U之间函数关系的是(  )
A    B     C    D
4.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示、离子源S产生一个质量为m、电荷量为q的正离子,离子产生出来时的速度很小,可以看作是静止的,离子产生出来后经过电压U加速,进入磁感应强度为B的匀强磁场,沿着半圆运动而达到记录它的照相底片P上,测得它在P上的位置到入口处S1的距离为x,则下列说法正确的是(  )
A.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子的质量一定变大
B.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明加速电压U一定变大
C.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明磁感应强度B一定变大
D.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子所带电荷量q可能变小
5.质谱仪是测带电粒子质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力,初速度为0)经同一电场加速后,垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子质量。其工作原理如图所示。虚线为某粒子运动轨迹,由图可知(  )
A.此粒子带负电
B.下极板S2比上极板S1电势高
C.若只减小加速电压U,则半径r变大
D.若只减小入射粒子的质量,则半径r变小
6.(多选)如图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场的磁感应强度和匀强电场的场强分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。平板S下方有磁感应强度为B0的匀强磁场。下列表述正确的是(  )
A.质谱仪是分析同位素的重要工具
B.速度选择器中的磁场方向垂直纸面向外
C.能通过狭缝P的带电粒子的速率等于
D.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小
◎题组三 回旋加速器
7.回旋加速器是加速带电粒子的装置,其主体部分是两个D形金属盒。两金属盒处在垂直于盒底的匀强磁场中,并分别与高频交流电源两极相连接,从而使粒子每次经过两盒间的狭缝时都得到加速,如图所示。现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是(  )
A.减小磁场的磁感应强度
B.减小狭缝间的距离
C.增大高频交流电压
D.增大金属盒的半径
8.(多选)如图所示,回旋加速器D形盒的半径为R,用来加速质量为m、电荷量为q的质子,质子每次经过电场区时,都恰好在电压为U时被加速,且电场可视为匀强电场,使质子由静止加速到能量为E后,由A孔射出。下列说法正确的是(  )
A.D形盒半径R、磁感应强度B不变,若加速电压U越高,质子的能量E将越大
B.磁感应强度B不变,若加速电压U不变,D形盒半径R越大,质子的能量E将越大
C.D形盒半径R、磁感应强度B不变,若加速电压U越高,质子在加速器中的运动时间将越长
D.D形盒半径R、磁感应强度B不变,若加速电压U越高,质子在加速器中的运动时间将越短
9.(2021·北京卷)如图所示,M为粒子加速器;N为速度选择器,两平行导体板之间有方向相互垂直的匀强电场和匀强磁场,磁场的方向垂直纸面向里,磁感应强度为B。从S点释放一初速度为0、质量为m、电荷量为q的带正电粒子,经M加速后恰能以速度v沿直线(图中平行于导体板的虚线)通过N。不计重力。
(1)求粒子加速器M的加速电压U;
(2)求速度选择器N两板间的电场强度E的大小和方向;
(3)仍从S点释放另一初速度为0、质量为2m、电荷量为q的带正电粒子,离开N时粒子偏离图中虚线的距离为d,求该粒子离开N时的动能Ek。
10.(2021·河北卷)如图所示,距离为d的两平行金属板P、Q之间有一匀强磁场,磁感应强度大小为B1、一束速度大小为v的等离子体垂直于磁场喷入板间。相距为L的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为B2。导轨平面与水平面夹角为θ,两导轨分别与P、Q相连。质量为m、电阻为R的金属棒ab垂直导轨放置,恰好静止。重力加速度为g,不计导轨电阻、板间电阻和等离子体中的粒子重力。下列说法正确的是(  )
A.导轨处磁场的方向垂直导轨平面向上,v=
B.导轨处磁场的方向垂直导轨平面向下,v=
C.导轨处磁场的方向垂直导轨平面向上,v=
D.导轨处磁场的方向垂直导轨平面向下,v=
11.(多选)如图所示为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成。若静电分析器通道中心线的半径为R,通道内均匀辐射电场在中心线处的电场强度大小为E,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B,方向垂直纸面向外。一质量为m、带电荷量为q的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P点垂直边界进入磁分析器,最终打到胶片上的Q点。不计粒子重力,下列说法正确的是(  )
A.粒子一定带正电
B.加速电场的电压U=ER
C.直径PQ=
D.若一群粒子从静止开始经过上述过程都落在胶片上同一点,则该群粒子具有相同的比荷
12.磁强计是利用霍尔效应来测量磁感应强度B的仪器,其原理可理解为:如图所示,一块导体接上a、b、c、d四个电极,将导体放在匀强磁场之中,a、b间通以电流I,c、d间就会出现电势差,只要测出c、d间的电势差U,就可以测得B。试证明之。
13.回旋加速器的工作原理如甲所示,置于真空中的D形金属盒半径为R,两盒间狭缝的间距为d,磁感应强度为B的匀强磁场与盒面垂直,被加速粒子的质量为m,电荷量为+q,加在狭缝间的交变电压如图乙所示,电压值的大小为U0,周期T=。一束该种粒子在0~时间内从A处均匀地飘入狭缝,其初速度视为零。现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用。求:
甲        乙
(1)出射粒子的动能Em;
(2)粒子从飘入狭缝至动能达到Em所需的总时间t0。
9/9课时分层作业(三) 洛伦兹力的应用
◎题组一 显像管
1.如图所示,将一阴极射线管置于一通电螺线管的正上方且在同一水平面内,则阴极射线将(  )
A.向外偏转
B.向里偏转
C.向上偏转
D.向下偏转
A [由右手螺旋定则可知通电螺线管在阴极射线处磁场方向竖直向下,阴极射线带负电,结合左手定则可知其所受洛伦兹力垂直于纸面向外。故选项A正确。]
2.显像管的原理示意图如图所示,当没有磁场时电子束打在荧光屏正中的O点。安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转。设垂直纸面向里的磁场方向为正方向,如果要使电子束打在荧光屏上的位置由P点逐渐移动到Q点,下列磁场能够使电子束发生上述偏转的是(  )
A     B     C     D
A [要使电子束打在荧光屏上的位置由P点逐渐移动到Q点,需要电子在洛伦兹力作用下向下运动,P到O过程中洛伦兹力向上,O到Q过程中洛伦兹力向下,根据左手定则知,能够使电子束发生上述偏转的磁场是A。]
◎题组二 质谱仪
3.质谱仪主要由加速电场和偏转磁场组成,其原理图如图。设想有一个静止的带电粒子P(不计重力),经电压为U的电场加速后,垂直进入磁感应强度为B的匀强磁场中,最后打到底片上的D点,设OD=x,则下图中能正确反映x2与U之间函数关系的是(  )
A    B     C    D
A [根据动能定理qU=mv2得v=。粒子在磁场中偏转,洛伦兹力提供向心力qvB=m,则R=,又x=2R,联立以上各式得x= ,知x2∝U,故A正确,B、C、D错误。]
4.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示、离子源S产生一个质量为m、电荷量为q的正离子,离子产生出来时的速度很小,可以看作是静止的,离子产生出来后经过电压U加速,进入磁感应强度为B的匀强磁场,沿着半圆运动而达到记录它的照相底片P上,测得它在P上的位置到入口处S1的距离为x,则下列说法正确的是(  )
A.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子的质量一定变大
B.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明加速电压U一定变大
C.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明磁感应强度B一定变大
D.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子所带电荷量q可能变小
D [由qU=mv2,得v=,x=2R,所以R==,x===,可以看出,x变大,可能是因为m变大、U变大、q变小或B变小,故只有D正确。]
5.质谱仪是测带电粒子质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力,初速度为0)经同一电场加速后,垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子质量。其工作原理如图所示。虚线为某粒子运动轨迹,由图可知(  )
A.此粒子带负电
B.下极板S2比上极板S1电势高
C.若只减小加速电压U,则半径r变大
D.若只减小入射粒子的质量,则半径r变小
D [由粒子在磁场中向左偏转,根据左手定则可知,该粒子带正电,故A错误;带正电粒子经过电场加速,则下极板S2比上极板S1电势低,故B错误;根据动能定理得qU=mv2,又由qvB=m得r=。若只减小加速电压U,则半径r减小,故C错误;若只减小粒子的质量,则半径减小,故D正确。]
6.(多选)如图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场的磁感应强度和匀强电场的场强分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。平板S下方有磁感应强度为B0的匀强磁场。下列表述正确的是(  )
A.质谱仪是分析同位素的重要工具
B.速度选择器中的磁场方向垂直纸面向外
C.能通过狭缝P的带电粒子的速率等于
D.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小
ABC [质谱仪是测量带电粒子的质量和分析同位素的重要工具,选项A正确;速度选择器中静电力与洛伦兹力是一对平衡力,即qvB=qE,故v=,选项C正确;根据粒子在平板下方的匀强磁场中的偏转方向可知粒子带正电,则在速度选择器中,粒子所受洛伦兹力方向向左,根据左手定则可以确定,速度选择器中的磁场方向垂直纸面向外,选项B正确;粒子在匀强磁场中运动的半径r=,即粒子的比荷=,由此看出粒子打在胶片上的位置越靠近狭缝P,粒子运动的半径越小,粒子的比荷越大,选项D错误。]
◎题组三 回旋加速器
7.回旋加速器是加速带电粒子的装置,其主体部分是两个D形金属盒。两金属盒处在垂直于盒底的匀强磁场中,并分别与高频交流电源两极相连接,从而使粒子每次经过两盒间的狭缝时都得到加速,如图所示。现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是(  )
A.减小磁场的磁感应强度
B.减小狭缝间的距离
C.增大高频交流电压
D.增大金属盒的半径
D [带电粒子从D形盒中射出时的动能Ekm=mv,带电粒子在磁场中做匀速圆周运动,则qvmB=,可得Ekm=,显然,当带电粒子q、m一定时,则Ekm∝R2B2,即Ekm随磁场的磁感应强度B、D形金属盒的半径R的增大而增大,与加速电场的电压和狭缝距离无关,故选D。]
8.(多选)如图所示,回旋加速器D形盒的半径为R,用来加速质量为m、电荷量为q的质子,质子每次经过电场区时,都恰好在电压为U时被加速,且电场可视为匀强电场,使质子由静止加速到能量为E后,由A孔射出。下列说法正确的是(  )
A.D形盒半径R、磁感应强度B不变,若加速电压U越高,质子的能量E将越大
B.磁感应强度B不变,若加速电压U不变,D形盒半径R越大,质子的能量E将越大
C.D形盒半径R、磁感应强度B不变,若加速电压U越高,质子在加速器中的运动时间将越长
D.D形盒半径R、磁感应强度B不变,若加速电压U越高,质子在加速器中的运动时间将越短
BD [由qvB=m得,v=,则最大动能Ek=mv2=,知最大动能与加速器的半径、磁感应强度以及电荷的电荷量和质量有关,与加速电压无关,故A错误,B正确;由动能定理得:ΔEk=qU,加速电压越大,每次获得的动能越大,而最终的最大动能与加速电压无关,是一定的,故加速电压越大,加速次数越少,加速时间越短,故C错误,D正确。故选BD。]
9.(2021·北京卷)如图所示,M为粒子加速器;N为速度选择器,两平行导体板之间有方向相互垂直的匀强电场和匀强磁场,磁场的方向垂直纸面向里,磁感应强度为B。从S点释放一初速度为0、质量为m、电荷量为q的带正电粒子,经M加速后恰能以速度v沿直线(图中平行于导体板的虚线)通过N。不计重力。
(1)求粒子加速器M的加速电压U;
(2)求速度选择器N两板间的电场强度E的大小和方向;
(3)仍从S点释放另一初速度为0、质量为2m、电荷量为q的带正电粒子,离开N时粒子偏离图中虚线的距离为d,求该粒子离开N时的动能Ek。
[解析] (1)粒子直线加速,根据功能关系有qU=mv2,解得U=。
(2)速度选择器中电场力与洛伦兹力平衡Eq=qvB,得E=vB,方向垂直导体板向下。
(3)粒子在全程电场力做正功,根据功能关系有
Ek=qU+Eqd
解得Ek=mv2+qBvd。
[答案] (1) (2)vB,方向垂直导体板向下 (3)mv2+qBvd
10.(2021·河北卷)如图所示,距离为d的两平行金属板P、Q之间有一匀强磁场,磁感应强度大小为B1、一束速度大小为v的等离子体垂直于磁场喷入板间。相距为L的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为B2。导轨平面与水平面夹角为θ,两导轨分别与P、Q相连。质量为m、电阻为R的金属棒ab垂直导轨放置,恰好静止。重力加速度为g,不计导轨电阻、板间电阻和等离子体中的粒子重力。下列说法正确的是(  )
A.导轨处磁场的方向垂直导轨平面向上,v=
B.导轨处磁场的方向垂直导轨平面向下,v=
C.导轨处磁场的方向垂直导轨平面向上,v=
D.导轨处磁场的方向垂直导轨平面向下,v=
B [由左手定则可知Q板带正电,P板带负电,所以金属棒ab中的电流方向为从a到b,对金属棒受力分析可知,金属棒受到的安培力方向沿导轨平面向上,由左手定则可知导轨处磁场的方向垂直导轨平面向下,由受力平衡可知B2IL=mgsin θ,而I=,而对等离子体受力分析有q=qvB1,解得v=。故B正确,A、C、D错误。]
11.(多选)如图所示为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成。若静电分析器通道中心线的半径为R,通道内均匀辐射电场在中心线处的电场强度大小为E,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B,方向垂直纸面向外。一质量为m、带电荷量为q的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P点垂直边界进入磁分析器,最终打到胶片上的Q点。不计粒子重力,下列说法正确的是(  )
A.粒子一定带正电
B.加速电场的电压U=ER
C.直径PQ=
D.若一群粒子从静止开始经过上述过程都落在胶片上同一点,则该群粒子具有相同的比荷
AD [由左手定则可知,粒子带正电,故A正确;在静电分析器中,静电力提供向心力,由牛顿第二定律得qE=m,而粒子在MN间被加速,由动能定理得qU=mv2,解得U=,故B错误;在磁分析器中,粒子做匀速圆周运动,且PQ=2r,PQ===,故C错误;若一群粒子从静止开始经过上述过程都落在胶片上同一点说明运动的直径相同,由于磁场、电场与静电分析器的半径均不变,则该群离子具有相同的比荷,故D正确。]
12.磁强计是利用霍尔效应来测量磁感应强度B的仪器,其原理可理解为:如图所示,一块导体接上a、b、c、d四个电极,将导体放在匀强磁场之中,a、b间通以电流I,c、d间就会出现电势差,只要测出c、d间的电势差U,就可以测得B。试证明之。
[解析] c、d间电势差达到稳定时,有U=Eh,此时定向移动的自由电荷受到的电场力与洛伦兹力平衡,
有Eq=qvB,式中v为自由电荷的定向移动速率,
由此可知B==
设导体中单位体积内的自由电荷数为n,
则电流I=nqSv
式中S为导体横截面积,即S=lh
因此v=,B=
由此可知B∝U。
故只要将装置先在已知磁场中定出标度,就可通过测定U来确定B的大小。
[答案] 见解析
13.回旋加速器的工作原理如甲所示,置于真空中的D形金属盒半径为R,两盒间狭缝的间距为d,磁感应强度为B的匀强磁场与盒面垂直,被加速粒子的质量为m,电荷量为+q,加在狭缝间的交变电压如图乙所示,电压值的大小为U0,周期T=。一束该种粒子在0~时间内从A处均匀地飘入狭缝,其初速度视为零。现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用。求:
甲        乙
(1)出射粒子的动能Em;
(2)粒子从飘入狭缝至动能达到Em所需的总时间t0。
[解析] (1)粒子在磁场中运动半径为R时,有
qvB=m
且Em=mv2
解得Em=。
(2)粒子被加速n次达到动能Em,则Em=nqU0
粒子在狭缝间做匀加速运动,设n次经过狭缝的总时间为Δt,加速度a=
匀加速直线运动nd=a·(Δt)2
由t0=(n-1)·+Δt,解得t0=-。
[答案] (1) (2)-
9/9