北师大版八年级数学下直角三角形的教学设计(3课时)

文档属性

名称 北师大版八年级数学下直角三角形的教学设计(3课时)
格式 zip
文件大小 97.9KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2014-03-08 20:17:41

文档简介

第一章 三角形的证明
2.直角三角形(二)
一、学情分析
学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。
二、教学任务分析
本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:
1.知识目标:
①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性
②利用“HL’’定理解决实际问题
2.能力目标:
①进一步掌握推理证明的方法,发展演绎推理能力
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。
1:复习提问
1.判断两个三角形全等的方法有哪几种?
2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。
3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通过作等腰三角形底边的高来证明“等边对等角”.
要求学生完成,一位学生的过程如下:
已知:在△ABC中, AB=AC.
求证:∠B=∠C.
证明:过A作AD⊥BC,垂足为C,
∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,
∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的对应角相等)
在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .
也有学生认同上述的证明。
教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。
2:引入新课
(1).“HL”定理.由师生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.
求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB2一BC2(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教师用多媒体演示:
定理 斜边和一条直角边对应相等的两个直角三角形全等.
这一定理可以简单地用“斜边、直角边”或“HL”表示.
从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对等角”的证法是正确的.
练习:判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.
对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D' (如图).
求证:Rt△ABC≌Rt△A'B'C'.
证明:在Rt△BDC和Rt△B'D'C'中,
∵BD=B'D',BC=B'C',
∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,
∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',
∴Rt△ABC≌CORt△A'B'C(SAS).
通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。
3:做一做
问题 你能用三角尺平分一个已知角吗 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)
4:议一议
如图,已知∠ACB=∠BDA=90°,要使△ACB≌BDA,还需要什么条件 把它们分别写出来.
这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案.
(教师一定要提供时间和空间,让同学们认真思考,勇于向困难提出挑战)
5: 例题学习
如图,在△ABC≌△A'B'C'中,CD,C'D'分别分别是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.
求证:△ABC≌△A'B'C'.
分析:要证△ABC≌△A'B'C',由已知中找到条件:一组边AC=A'C',一组角∠ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求么∠B=∠B',这样就有AAS;还可寻求BC=B'C',那么就可根据SAS.……注意到题目中,通有CD、C'D'是三角形的高,CD=C'D'.观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证的Rt△ADC≌Rt△A'D'C',因此证明∠A=∠A' 就可行.
证明:∵CD、C'D'分别是△ABC△A'B'C'的高(已知),
∴∠ADC=∠A'D'C'=90°.
在Rt△ADC和Rt△A'D'C'中,
AC=A'C'(已知),
CD=C'D' (已知),
∴Rt△ADC≌Rt△A'D'C' (HL).
∠A=∠A',(全等三角形的对应角相等).
在△ABC和△A'B'C'中,
∠A=∠A' (已证),
AC=A'C' (已知),
∠ACB=∠A'C'B' (已知),
∴△ABC≌△A'B'C' (ASA).
6:课时小结
本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.同学们这一节课的表现,很值得继续发扬广大.
7:课后作业
习题1.6第3、4、5题
四、教学反思
本节HL定理的证明学生掌握得比较好,定理的应用方面尤其是“议一议”中的该题灵活性较强,给教师和学生发挥的余地较大,该题是一个开放题,结论和方法并不惟一,所以学生积极性非常高,作为教师要充分利用好这个资源,可以达到一题多解,举一反三的效果。第一章 三角形的证明
2.直角三角形(一)
一、学情分析
直角三角形全等的条件和勾股定理及其逆定理在前面已由学生通过一些直观的方法进行了探索,所以学生对这些结论已经有所了解,对于它们,教科书努力将证明的思路展现出来.例如以前我们曾用割补法验证过勾股定理,而此处对勾股定理的证明应以我们认定的几条公理和由此推出的定理为依据进行,虽然证明的方法有多种,但对学生来说,这些都有难度,因此教科书将其两种证明方法放在“读一读’’中,供有兴趣的学生阅读,不要求所有学生掌握,其逆定理的证明方法对学生来说也是有一定难度的.
二、教学目标
1.知识目标:
(1)掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法,并能应用定理解决与直角三角形有关的问题。
(2)结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立.
2.能力目标:
(1)进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.
(2)进一步掌握推理证明的方法,发展演绎推理的能力.
3.教学重点、难点
重点
①了解勾股定理及其逆定理的证明方法.
②结合具体例子了解逆命题的概念,识别两个互逆命题,知道原命题成立,其逆命题不一定成立.
难点
勾股定理及其逆定理的证明方法.
三、教学过程
本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:讲述新课;第三环节:议一议;第四环节:想一想;第五环节:.随堂练习;第六环节:课时小结;第七环节:课后作业。
1:创设情境,引入新课
通过问题1,让学生在解决问题的同时,回顾直角三角形的一般性质。
[问题1]一个直角三角形房梁如图所示,其中BC⊥AC, ∠BAC=30°,AB=10 cm,CB1⊥AB,B1C⊥AC1,垂足分别是B1、C1,那么BC的长是多少 B1C1呢
解:在Rt△ABC中,∠CAB=30°,AB=10 cm,
∴BC=AB=×10=5 cm.
∵CB1⊥AB,∴∠B+∠BCB1=90°
又∵∠A+∠B=90°
∴∠BCB1 =∠A=30°
在Rt△ACB1中,BB1=BC=×5= cm=2.5 cm.
∴AB1=AB=BB1=10—2.5=7.5(cm).
∴在Rt△C1AB1中,∠A=30°
∴B1C1 =AB1=× 7.5=3.75(cm).
解决这个问题,主要利用了上节课已经证明的“30°角的直角三角形的性质”.由此提问:“一般的直角三角形具有什么样的性质呢 ”从而引入勾股定理及其证明。
教材中曾利用数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗
请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法.
2:讲述新课
阅读完毕后,针对“读一读”中使用的两种证明方法,着重讨论第一种,第二种方法请有兴趣的同学课后阅读.
(1).勾股定理及其逆定理的证明.
已知:如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c.
求证:a2+b2=c2.
证明:延长CB至D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE(如图),则△ABC≌△BED.
∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等).
∴四边形ACDE是直角梯形.
∴S梯形ACDE=(a+b)(a+b) = (a+b)2.
∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°,
AB=BE.
∴S△ABE=c2
∵S梯形ACDE=S△ABE+S△ABC+S△BED,
∴(a+b) 2= c2 + ab + ab,
即a2 + ab + b2=c2 + ab,
∴a2+b2=c2
教师用多媒体显示勾股定理内容,用课件演示勾股定理的条件和结论,并强调.具体如下:勾股定理:直角三角形两直角边的平方和等于斜边的平方.
反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗
师生共同来完成.
已知:如图:在△ABC中,AB2+AC2=BC2
求证:△ABC是直角三角形.
分析:要从边的关系,推出∠A=90°是不容易的,如果能借助于△ABC与一个直角三角形全等,而得到∠A与对应角(构造的三角形的直角)相等,可证.
证明:作Rt△A′B′C′,使∠A′=90°,A′B′=AB,A′C′、AC(如图),
则A′B′2+A′C′2.(勾股定理).
∵AB2+AC2=BC2,A′B′=AB,A′C′
∴BC2=B′C′2
∴BC=B′C′
∴△ABC≌△A′B′C′(SSS)
∴∠A=∠A′=90°(全等三角形的对应角相等).
因此,△ABC是直角三角形.
总结得勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
(2).互逆命题和互逆定理.
观察上面两个命题,它们的条件和结论之间有怎样的关系 在前面的学习中还有类似的命题吗
通过观察,学生会发现:
上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件.
这样的情况,在前面也曾遇到过.例如“两直线平行,内错角相等”,交换条件和结论,就得到“内错角相等,两直线平行”.又如“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半”.交换此定理的条件和结论就可得“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”。
3:议一议
观察下面三组命题:学生以分组讨论形式进行,最后在教师的引导下得出命题与逆命题的区别与联系。
让学生畅所欲言,体会逆命题与命题之间的区别与联系,要能够清晰地分别出一个命题的题设和结论,能够将一个命题写出“如果……;那么……”的形式,以及能够写出一个命题的逆命题。
活动中,教师应注意给予适度的引导,学生若出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结。活动时可以先让学生观察下面三组命题:
如果两个角是对顶角,那么它们相等.
如果两个角相等,那么它们是对顶角.
如果小明患了肺炎,那么他一定发烧.
如果小明发烧,那么他一定患了肺炎.
三角形中相等的边所对的角相等.
三角形中相等的角所对的边相等.
上面每组中两个命题的条件和结论也有类似的关系吗 与同伴交流.
不难发现,每组第二个命题的条件是第一个命题的结论,第二个命题的结论是第一个命题的条件.
在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题.
再来看“议一议”中的三组命题,它们就称为互逆命题,如果称每组的第一个命题为原命题,另一个则为逆命题.请同学们判断每组原命题的真假.逆命题呢
在第一组中,原命题是真命题,而逆命题是假命题.
在第二组中,原命题是真命题,而逆命题是假命题.
在第三组中,原命题和逆命题都是真命题.
由此我们可以发现:原命题是真命题,而逆命题不一定是真命题.
4:想一想
要写出原命题的逆命题,需先弄清楚原命题的条件和结论,然后把结论变换成条件,条件变换成结论,就得到了逆命题.
请学生写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题吗 它们都是真命题吗?
从而引导学生思考:原命题是真命题吗 逆命题一定是真命题吗 并通过具体的实例说明。
如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理.
其中逆命题成为原命题(即原定理)的逆定理.
能举例说出我们已学过的互逆定理
如我们刚证过的勾股定理及其逆定理,“两直线平行,内错角相等”与“内错角相等,两直线平行”.“全等三角形对应边相等”和“三边对应相等的三角形全等”、“等边对等角”和“等角对等边”等.
5:随堂练习
说出下列命题的逆命题,并判断每对命题的真假;
(1)四边形是多边形;
(2)两直线平行,内旁内角互补;
(3)如果ab=0,那么a=0, b=0
[分析]互逆命题和互逆定理的概念,学生接受起来应不会有什么困难,尤其是对以“如果……那么……”形式给出的命题,写出其逆命题较为容易,但对于那些不是以这种形式给出的命题,叙述其逆命题有一定困难.可先分析命题的条件和结论,然后写出逆命题.
解:(1)多边形是四边形.原命题是真命题,而逆命题是假命题.
(2)同旁内角互补,两直线平行.原命题与逆命题同为正.
(3)如果a=0,6=0,那么ab=0.原命题是假命题,而逆命题是真命题.
6:课时小结
这节课我们了解了勾股定理及逆定理的证明方法,并结合数学和生活中的例子了解逆命题的概念,会识别两个互逆命题,知道,原命题成立,其逆命题不一定成立,掌握了证明方法,进一步发展了演绎推理能力.
7:课后作业
习题1.5第1、2、3、4题
四、教学反思
学生对于命题和逆命题中题设和结论分析和把握不是太准,部分学生尤其是在语言表述方面仍然有些欠缺,作为教师要关注到学生的个体差异,对于学习本节知识有困难的学生要给予及时的帮助和指导。使每一个学生都能经历证明的过程,为他们提供充分地寻找证明思路的时间、空间和方法,体会证明的必要性.另外学生对于命题成立的证明方法,锻炼他们的演绎推理能力离目标还是有一定的差距。所以作为教师一定不能急躁,要本着以学生为本的目的,注意学生个体差异,对学习证明有困难的学生给予帮助和指导.第一章 三角形的证明
1. 等腰三角形(三)
学生知识状况分析
本节课是等腰三角形的第三课时,通过前面两课时的学习,学生已经掌握了等腰三角形的相关性质,并知道了用综合法证明命题的基本要求和步骤。为学习等腰三角形的判定定理奠定了知识和方法的基础。
教学任务分析
本节课的主要任务是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明。这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一。因此,本节课的教学目标定为:
1.探索等腰三角形判定定理.
2.理解等腰三角形的判定定理,并会运用其进行简单的证明.
3.了解反证法的基本证明思路,并能简单应用。
4.培养学生的逆向思维能力。
教学过程分析
本节课的教学过程设计了以下六个环节:复习引入--逆向思考,定理证明---巩固练习----适时提问 导出反证法---拓展延伸----课堂小结。
第一环节:复习引入
活动过程:通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?
问题2.我们是如何证明上述定理的?
问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?
活动意图:设计是问题串是为引出等腰三角形的判定定理埋下伏笔。学生独立思考是对上节课内容有效地检测手段。
第二环节:逆向思考,定理证明
活动过程与效果:
教师:上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.例如“等边对等角”,反过来成立吗 也就是:有两个角相等的三角形是等腰三角形吗
[生]如图,在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了.
[师]你是如何想到的
[生]由前面定理的证明获得启发,比如作BC的中线,或作A的平分线,或作BC上的高,都可以把△ABC分成两个全等的三角形.
[师]很好.同学们可在练习本上尝试一下是否如此,然后分组讨论.
[生]我们组发现,如果作BC的中线,虽然把△ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等.因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,是不能够判断两个三角形全等的.后两种方法是可行的.
[师]那么就请同学们任选一种方法按要求将推理证明过程书写出来.(教师可让两个同学在黑板上演示,并对推理证明过程讲评)
(证明略)
[师]我们用“反过来”思考问题,获得并证明了一个非常重要的定理——等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.这一定理可以简单叙述为:等角对等边.我们不仅发现了几何图形的对称美,也发现了数学语言的对称美.
第三环节:巩固练习
活动过程与效果:将书中的随堂练习提前到此,是为了及时巩固判定定理。引导学生进行分析。
已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.
求证:AB=AC.
证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等),
∠2=∠C(两直线平行,内错角相等).
又∵∠1=∠2,∴∠B=∠C.
∴AB=AC(等角对等边).
第四环节:适时提问 导出反证法
活动过程与效果:
我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论.如果否定命题的条件,是否也可获得一个数学结论吗 我们一起来“想一想”:
小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗 如果成立,你能证明它吗
有学生提出:“我认为这个结论是成立的.因为我画了几个三角形,观察并测量发现,如果两个角不相等,它们所对的边也不相等.但要像证明“等角对等边”那样却很难证明,因为它的条件和结论都是否定的.”的确如此.像这种从正面人手很难证明的结论,我们有没有别的证明思路和方法呢
我们来看一位同学的想法:
如图,在△ABC中,已知∠B≠∠C,此时AB与Ac要么相等,要么不相等.
假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC
你能理解他的推理过程吗
再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=180°,但△AB∠A+∠B+∠C=180°, “∠A+∠B=180°”与“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有两个直角.
引导学生思考:上一道面的证法有什么共同的特点呢 引出反证法。
都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.
接着用“反过来”思考问题的方法获得并证明了等腰三角形的判定定理“等角对等边”,最后结合实例了解了反证法的含义.
第五环节:拓展延伸
活动过程与效果:在一节课结束之际,为培养学生思维的综合性、灵活性特安排了2个练习。一个是通过平行线、角平分线判定三角形的形状,再通过线段的转换求图形的周长。另一个是一个开放性的问题,考察学生多角度多维度思考问题的能力。学生在独立思考的基础上再小组交流。
1.如图,BD平分∠CBA,CD平分∠ACB,且MN∥BC,设AB=12,AC=18,求△AMN的周长. .
2.现有等腰三角形纸片,如果能从一个角的顶点出发,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角形的顶角的度数
第六环节:课堂小结
(1)本节课学习了哪些内容?
(2)等腰三角形的判定方法有哪几种?
(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.
(4)举例谈谈用反证法说理的基本思路
N
M
C
B
A
D