19.1.2函数的图象 课件(共32张PPT)+教学案

文档属性

名称 19.1.2函数的图象 课件(共32张PPT)+教学案
格式 zip
文件大小 10.7MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-02-03 08:46:07

文档简介

中小学教育资源及组卷应用平台
2022—2023学年度下学期八年级数学教学案 第5 周 第5节
课题 19.1.2 第1课时 函数的图象
教学目标 知识与技能:理解函数的图象的概念,掌握画函数图象的一般步骤,能画出一些简单的函数图象,能根据所给函数图象读出一些有用的信息。过程与方法:情感态度与价值观:
重点 掌握画函数图象的一般步骤,能画出一些简单的函数图象
难点 能根据所给函数图象读出一些有用的信息
教具 多媒体、教学案
教与学的过程 教与学的过程教与学的过程 教 与 学 的 内 容
K线图;每天的价格变动 心电图记录的是心脏本身的生物电在每一心动周期中发生的电变化情况.函数的图象问题:1.正方形的面积S与边长x的函数解析式为 ,其中x的取值范围是 .我们还可以利用在坐标系中画图的方法来表示S与x的关系.想一想:(1)在平面直角坐标系中,平面内的点可以用一对 来表示.即坐标平面内 与有序数对是一一 的. (2)怎样获得组成图形的点? (3)怎样确定满足函数关系的点的坐标? (4)自变量x 的一个确定的值与它所对应的唯一的函数值S,是否唯一确定了一个点(x,S)呢? 2.填写下表: 一般地,对于一个函数, 如果把自变量与函数的每对 对应值分别作为点的横、纵 坐标,那么坐标平面内由这 些点组成的图形,就是这个函数的图象.如右图中的曲 线就叫函数 (x>0) 的图象.例1 画出下列函数的图象:(1); 解:(1)从函数解析式可以看出, x的取值范围是 .第一步:从x的取值范围中选取一些简洁的数值,算出y的对应值,填写在表格里:第二步:根据表中数值描点(x,y);第三步:用平滑曲线连接这些点.画出的图象是一条 ,当自变量的值越来越大时,对应的函数值 .(2);.解:(2)列表 :取一些自变量的值,并求出对应的函数值,填入表中.为什么没有“0”?(2)描点: 分别以表中对应的x、y为横纵坐标,在坐标系中描出对应的点.(3)连线: 用光滑的曲线把这些点依次连接起来.归纳总结画函数图象的一般步骤:第一步,列表——表中给出一些自变量的值 及其 ;第二步,描点——在平面直角坐标系中,以自变量的值为 ,相应的函数值为 ,描出表格中数值对应的各点;第三步:连线——按照横坐标 的顺序,把所描出的各点用 连接起来. 我们知道,函数图象是以自变量的值和对应的函数值分别为横、纵坐标的点组成的图形,这样的点有无数个,那么怎样判断一个点是否在函数图象上?做一做(1)判断各点是否在函数的图象上? ①(-0.5,1); ②(1.5,4).(2)判断下列各点是否在函数 的图象上? ①(2,3);②(4,2).方法:把点的横坐标(即自变量x)的取值代入解析式求出相应的函数值y值,看是否等于该点的纵坐标,如果等于,则该点在函数图象上;如不在,则该点不在函数图象上.实际问题中的函数图象 思考:下图是自动测温仪记录的图象,它反映了北京的春季某天气温 T 如何随时间 t 的变化而变化.你从图象中得到了哪些信息? (1)从这个函数图象可知:这一天中 时气温最低( ), 气温最高( ); (2)从 至 气温呈下降状态,从4时至 14时气温呈上升状态,从 至 _________气温又呈下降状态. 例2 下图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中x 表示时间,y 表示小明离家的距离,小明家、食堂、图书馆在同一直线上.根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间? (2)小明在食堂吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多长时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?做一做小明同学骑自行车去郊外春游,如图表示他离家的距离y(km)与所用的时间x(h)之间关系的函数图象. (1)根据图象回答: 小明到达离家最远的地方需______h;(2)小明出发2.5 h后离家_______km;(3)小明出发__________h后离家12 km. 方法小结解答图象信息题主要运用数形结合思想,化图象信息为数字信息.主要步骤如下:(1)了解横、纵轴的意义;(2)从 上判定函数与自变量的关系;(3)抓住图象中端点,拐点等特殊点的实际意义.拓展提升如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是(  )当堂练习 1.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反映全程h与t的关系图是( )2.最近中旗连降雨雪,德岭山水库水位上涨.如图表示某一天水位变化情况,0时的水位为警戒水位.结合图象判断下列叙述不正确的是(  )A.8时水位最高 B.P点表示12时水位为0.6米 C.8时到16时水位都在下降 D.这一天水位均高于警戒水位3.(1)在所给的平面直角坐标系中画出函数的图象.(先填写下表,再描点、连线)(2)点P(5,2) 该函数的图象上(填“在”或“不在”). 4.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,图中x表示时间,y表示张强离家的距离. (1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远? (3)张强在文具店停留了多少时间? (4)张强从文具店回家的平均速度是多少?
课后小结
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)(共32张PPT)
19.1.2函数的图象
xx版xx年级上册
情境引入
学习目标
1.理解函数的图象的概念;
2.掌握画函数图象的一般步骤,能画出一些简单的函数图象;(重点)
3.能根据所给函数图象读出一些有用的信息.(难点)
图片引入
每天的价格变动情况.
K线图
心电图
记录的是心脏本身的生物电在每一心动周期中发生的电变化情况.
问题:1.正方形的面积S与边长x的函数解析式为 ,其中x的取值范围是 .
我们还可以利用在坐标系中画图的方法来表示S与x的关系.
函数的图象

S=x2
x>0
合作探究
(2)怎样获得组成图形的点?
先确定点的坐标.    
(4)自变量x 的一个确定的值与它所对应的唯一的函数值S,是否唯一确定了一个点(x,S)呢?
取一些自变量的值,计算出相应的函数值.
(3)怎样确定满足函数关系的点的坐标?
(1)在平面直角坐标系中,平面内的点可以用一对 来表示.即坐标平面内 与有序数对是一一 的.

对应
想一想:
2.填写下表:
x
0.5
1
1.5
2
2.5
3
3.5
S
0.25
1
2.25
4
6.25
9
12.25
  一般地,对于一个函数,
如果把自变量与函数的每对
对应值分别作为点的横、纵
坐标,那么坐标平面内由这
些点组成的图形,就是这个
函数的图象.如右图中的曲
线就叫函数 (x>0)
的图象.
用空心圈表示
不在曲线的点
用平滑曲线去连接画出的点
例1 画出下列函数的图象:
(1) ; (2) .
解:(1)从函数解析式可以看出,
x的取值范围是 .
第一步:从x的取值范围中选取一些简洁的数值,
算出y的对应值,填写在表格里:
x … -3 -2 -1 0 1 2 3 …
y … …
-5 -3 -1 1 3 5 7
全体实数
典例精析
O
x
y
1
2
3
4
5
-4
-3
-2
-1
3
1
4
2
5
-2
-4
-1
-3
y=2x+1
第二步:根据表中数值描点(x,y);
第三步:用平滑曲线连接这些点.
当自变量的值越来越大时,
对应的函数值 .
画出的图象是一条 ,
直线
越来越大
-6
x … -5 -4 -3 -2 -1 1 2 3 4 5 …
y …

6
-3
-2
-1.2
-1.5
3
2
1.5
1.2
为什么没有“0”?
解:(2)列表 :取一些自变量的值,并求出对应的函数值,填入表中.
y
5
x
O
-4
-3
-2
-1
1
2
3
4
5
-5
1
2
3
4
-1
-2
-3
-4
-5
6
-6
(2)描点: 分别以表中
对应的x、y为横纵
坐标,在坐标系中描
出对应的点.
(3)连线: 用光滑的曲线把这些点依次连接起来.
(1,-6)
第一步,列表——表中给出一些自变量的值
及其 ;
第二步,描点——在平面直角坐标系中,以自
变量的值为 ,相应的函数值为 ,描出表格中数值对应的各点;
第三步:连线——按照横坐标 的顺序,把所描出的各点用 连接起来.
对应的函数值
横坐标
纵坐标
平滑曲线
由小到大
归纳总结
画函数图象的一般步骤:
  我们知道,函数图象是以自变量的值和对应的函数值分别为横、纵坐标的点组成的图形,这样的点有无数个,那么怎样判断一个点是否在函数图象上?
(1)判断下列各点是否在函数 的图象上?
①(-0.5,1); ②(1.5,4).
(2)判断下列各点是否在函数 的图象上?
①(2,3);②(4,2).
把点的横坐标(即自变量x)的取值代入解析式求出相应的函数值y值,看是否等于该点的纵坐标,如果等于,则该点在函数图象上;如不在,则该点不在函数图象上.
方法
做一做
-3
O
4
14
24
8
T/℃
t/时
思考:下图是自动测温仪记录的图象,它反映了北京的春季某天气温 T 如何随时间 t 的变化而变化.你从图象中得到了哪些信息?
实际问题中的函数图象

从图象中可以看出这一天中任一时刻的气温.
(1)从这个函数图象可知:这一天中 时气温最低( ), 气温最高( );
4
-3°C
14时
8°C
(2)从 至 气温呈下降状态,从4时至 14时气温呈上升状态,从 至 _________气温又呈下降状态.
0时
4时
14时
24时
-3
O
4
14
24
8
T/℃
t/时
例2 下图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中x 表示时间,y 表示小明离家的距离,小明家、食堂、图书馆在同一直线上.
8
25
28
58
68
x/min
0.8
0.6
y/km
O
根据图象回答下列问题:
(1)食堂离小明家多远?小明从家到食堂用了多少时间?
解:(1)食堂离小明家0.6km,小明从家到食堂用了8min.
(2)小明在食堂吃早餐用了多少时间?
8
25
28
58
68
x/min
0.8
0.6
y/km
O
(2)25-8=17,小明在食堂吃早餐用了17min.
8
25
28
58
68
x/min
0.8
0.6
y/km
O
(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?
(3)0.8-0.6=0.2,食堂离图书馆0.2km;28-25=3,小明从食堂到图书馆用了3min.
8
25
28
58
68
x/min
0.8
0.6
y/km
O
(4)小明读报用了多长时间?
(4)58-28=30,小明读报用了30min.
(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?
8
25
28
58
68
x/min
0.8
0.6
y/km
O
(5)图书馆离小明家0.8km,小明从图书馆回家用了68-58=10(min),由此算出的平均速度是0.08km/min.
小明同学骑自行车去郊外
春游,如图表示他离家的
距离y(km)与所用的时间x(h)
之间关系的函数图象.
(1)根据图象回答:
小明到达离家最远的地方
需______h;
(2)小明出发2.5 h后
离家_______km;
(3)小明出发__________h后离家12 km.
3
22.5
2.5
12
做一做
0.8或5.2
解答图象信息题主要运用数形结合思想,化图象信息为数字信息.
主要步骤如下:
(1)了解横、纵轴的意义;
(2)从 上判定函数与自变量的关系;
(3)抓住图象中端点,拐点等特殊点的实际意义.
图象形状
方法小结
如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是(  )
B
A
B
C
D
拓展提升
当堂练习
1.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反映全程h与t的关系图是( )
D
2.最近清原县连降雨雪,大伙房水库水位上涨.如图表示某一天水位变化情况,0时的水位为警戒水位.结合图象判断下列叙述不正确的是(  )
A.8时水位最高
B.P点表示12时水位为0.6米
C.8时到16时水位都在下降
D.这一天水位
均高于警戒水位
C
(2)点P(5,2) 该函数的图象
上(填“在”或“不在”).
3.(1)在所给的平面直角坐标系中画出函数 的图象.(先填写下表,再描点、连线)
x … -3 -2 -1 0 1 2 3 …
y … …
-1
0
1
O
x
y
1
2
3
4
5
-4
-3
-2
-1
3
1
2
-2
-1
-3
不在
(1)体育场离张强家多远?张强从家到体育场用了多少时间?
答:2.5千米.
答:15分钟.
4.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,图中x表示时间,y表示张强离家的距离.
(2)体育场离文具店多远?
(3)张强在文具店停留了多少时间?
(4)张强从文具店回家的平均速度是多少?
答:2.5-1.5=1(千米)
答:65-45=20(分)
课堂小结
函数的图象
图象的画法
图象表达的实际意义
描点
列表
连线
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin