(共31张PPT)
第19章一次函数小结与复习
人教版八年级下册
要点梳理
1. 常量与变量
叫变量,
叫常量.
数值发生变化的量
数值始终不变的量
在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
一、函数
2.函数定义:
3.函数的图象:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
列表法
解析式法
图象法.
5.函数的三种表示方法:
4.描点法画图象的步骤:列表、描点、连线
一次函数 一般地,如果y= k x+b (k、b是常数,k≠0),那么y叫做x的一次函数.
正比例函数 特别地,当b=____时,一次函数y=k x+b变为y= _____(k为常数,k≠0),这时y叫做x的正比例函数.
0
kx
二、一次函数
1.一次函数与正比例函数的概念
2.分段函数
当自变量的取值范围不同时,函数的解析式也不同,这样的函数称为分段函数.
函数 字母系数取值
( k>0 ) 图象 经过的象限 函数性质
y=kx+b
(k≠0) b>0 y随x增大而
增大
b=0
b<0
第一、三象限
第一、二、三象限
第一、三、四象限
3.一次函数的图象与性质
函数 字母系数取值
( k<0 ) 图象 经过的象限 函数性质
y=kx+b
(k≠0)
b>0 y随x增大而
减小
b=0
b<0
第一、二、
四象限
第二、四象限
第二、三、
四象限
求一次函数解析式的一般步骤:
(1)先设出函数解析式;
(2)根据条件列关于待定系数的方程(组);
(3)解方程(组)求出解析式中未知的系数;
(4)把求出的系数代入设的解析式,从而具体写出这个解析式.这种求解析式的方法叫待定系数法.
4.用待定系数法求一次函数的解析式
求ax+b=0(a,b是
常数,a≠0)的解.
x为何值时,函数
y= ax+b的值为0?
从“数”的角度看
求ax+b=0(a, b是
常数,a≠0)的解.
求直线y= ax+b,
与 x 轴交点的
横坐标.
从“形”的角度看
(1)一次函数与一元一次方程
5.一次函数与方程、不等式
解不等式ax+b>0
(a,b是常数,a≠0) .
x为何值时,函数
y= ax+b的值大于0?
解不等式ax+b>0
(a,b是常数,a≠0) .
求直线y= ax+b在 x轴
上方的部分(射线)
所对应的横坐标的
取值范围.
从“数”的角度看
从“形”的角度看
(2)一次函数与一元一次不等式
一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个一次函数,也对应一条直线.
(3)一次函数与二元一次方程组
方程组的解 对应两条直线交点的坐标.
考点一 函数的有关概念及图象
例1 王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离家时间x(分)与离家距离y(米)之间的关系是( )
A
B
C
D
【分析】对四个图依次进行分析,符合题意者即为所求.
【答案】D
D
O
O
O
O
利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数问题的相应解决.
方法总结
针对训练
1.下列变量间的关系不是函数关系的是( )
A.长方形的宽一定,其长与面积
B.正方形的周长与面积
C.等腰三角形的底边长与面积
D.圆的周长与半径
C
2.函数 中,自变量x的取值范围是( )
A.x>3 B.x<3 C.x≤3 D.x≥-3
B
3.星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(千米)和所用的时间x(分)之间的函数关系.下列说法错误的是( )
A.小强从家到公共汽车
站步行了2千米
B.小强在公共汽车站等
小明用了10分钟
C.公交车的平均速度
是34千米/时
D.小强乘公交车用了30分钟
C
x(分)
y(千米)
考点二 一次函数的图象与性质
例2 已知函数y=(2m+1)x+m﹣3;
(1)若该函数是正比例函数,求m的值;
(2)若函数的图象平行直线y=3x﹣3,求m的值;
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;
(4)若这个函数图象过点(1,4),求这个函数的解析式.
【分析】(1)由函数是正比例函数得m-3=0且2m+1≠0;(2)由两直线平行得2m+1=3;(3)一次函数中y随着x的增大而减小,即2m+1<0;(4)代入该点坐标即可求解.
解:(1)∵函数是正比例函数,∴m﹣3=0,且2m+1≠0,
解得m=3.
(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3,
解得m=1.
(3)∵y随着x的增大而减小,∴2m+1<0,解得m< .
(4)∵该函数图象过点(1,4),代入得2m+1+m-3=4,
解得m=2,∴该函数的解析式为y=5x-1.
一次函数的图象与y轴交点的纵坐标就是y=kx+b中b的值;两条直线平行,其函数解析式中的自变量系数k相等;当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
方法总结
针对训练
4.一次函数y=-5x+2的图象不经过第______象限.
5.点(-1,y1),(2,y2)是直线y=2x+1上两点,则y1____y2.
三
<
6.填空题:
有下列函数:① , ② ,③ , ④ . 其中函数图象过原点的是_____;函数y随x的增大而增大的是________;函数y随x的增大而减小的是_____;图象在第一、二、三象限的是______.
②
③
①②③
④
x
y
2
=
考点三 一次函数与方程、不等式
例3 如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
y
x
O
y1=x+b
y2=kx+4
P
A.x>﹣2 B.x>0
C.x>1 D.x<1
1
3
C
【分析】观察图象,两图象交点为
P(1,3),当x>1时,y1在y2上方,
据此解题即可.
【答案】C.
本题考查了一次函数与一元一次不等式,从函数的角度看,就是寻求一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
方法总结
针对训练
7.方程x+2=0的解就是函数y=x+2的图象与( )
A.x轴交点的横坐标 B.y轴交点的横坐标
C.y轴交点的纵坐标 D.以上都不对
8.两个一次函数y=-x+5和y=-2x+8的图象的交点坐标是 _________.
A
(3,2)
(1)问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个 A 种造型的成本是 800 元,搭配一个 B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
例4 为美化深圳市景,园林部门决定利用现有的 3490 盆甲种花卉和 2950 盆乙种花卉搭配 A、B 两种园艺造型共 50 个摆放在迎宾大道两侧,已知搭配一个 A 种造型需甲种花卉 80 盆,乙种花卉 40 盆,搭配一个 B 种造型需甲种花卉 50 盆,乙种花卉 90 盆.
考点四 一次函数的应用
解:设搭配 A 种造型 x 个,则 B 种造型为(50-x)个,
依题意,得
∴31≤x≤33.
∵x 是整数,x 可取 31,32,33,
∴可设计三种搭配方案:
①A 种园艺造型 31 个,B 种园艺造型 19 个;
②A 种园艺造型 32 个,B 种园艺造型 18 个;
③A 种园艺造型 33 个,B 种园艺造型 17 个.
解得
方案①需成本:31×800+19×960=43040(元);
方案②需成本:32×800+18×960=42880(元);
方案③需成本:33×800+17×960=42720(元).
(2)方法一:
方法二:成本为
y=800x+960(50-x)=-160x+48000(31≤x≤33).
根据一次函数的性质,y 随 x 的增大而减小,
故当 x=33 时,y 取得最小值为
33×800+17×960=42720(元).
即最低成本是 42720 元.
用一次函数解决实际问题,先理解清楚题意,把文字语言转化为数学语言,列出相应的不等式(方程),若是方案选择问题,则要求出自变量在取不同值时所对应的函数值,判断其大小关系,结合实际需求,选择最佳方案.
方法总结
9.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是多少升?
针对训练
解:设一次函数的解析式为
y=kx+35,将(160,25)代入,
得160k+35=25,
解得k= ,
所以一次函数的解析式为y= x+35.
再将x=240代入 y= x+35,
得y= ×240+35=20,
即到达乙地时油箱剩余油量是20升.
10.小星以2米/秒的速度起跑后,先匀速跑5秒,然后突然把速度提高4米/秒,又匀速跑5秒.试写出这段时间里他的跑步路程s(单位:米)随跑步时间x(单位:秒)变化的函数关系式,并画出函数图象.
解:依题意得
s={
2x
(0≤x≤5)
10+6(x-5)
(510
0
s(米)
5
0
x(秒)
①
40
10
s(米)
10
5
x(秒)
②
x(秒)
s(米)
O
·
·
·
·
5
10
10
40
·
·
·
s=2x (0≤x≤5)
s=10+6(x-5) (5课堂小结
某些运动变化
的现实问题
函数
建立函
数模型
定义
自变量取值范围
表示法
一次函数
y=kx+b(k≠0)
应用
图象:一条直线
性质:
k>0,y 随x 的增大而增大
k<0,y 随x 的增大而减小
数形结合
一次函数与方程(组)、
不等式之间的关系
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin