一元二次方程

文档属性

名称 一元二次方程
格式 zip
文件大小 1.3MB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2014-03-11 17:22:17

图片预览

文档简介

课件19张PPT。3.1 一元二次方程(1)知识回顾1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程。举例说明
2.分式方程:分母中含有未知数的方程。举例说明教学目标1、通过实际问题情境,抽象出一元二次方程的概念,使学生体会方程是刻画现实世界中等量关系的有效的数学模型。
2、了解一元二次方程的意义,掌握一元二次方程的一般形式,会把一元二次方程化为一般形式。1、一块足球场的的面积为7140m2,周长为346m,求足球场的长和宽。(173-x)(173-x)x=71402、如图,一个直角三角形的三边都是整数,它的斜边长是11cm,两条直角边的差为7cm,求两直角边的长X+7x2+(x+7)2=1123、如图点C把线段AB分成两条线段AC和BC,且
求:由 得
交流与发现设AB=1 AC=x 则BC=1-x 可得方程:点 C是线段AB的黄金分割点x2=1-xAC2=AB·CB== (1)方程的两边都是整式;
(2)只含有一个未知数(一元)
(3)整理(去括号、移项、合并同类项)后未知数的最高次数是2次
归纳:只含有      ,并且整理后未知数的最高次数是的 , 叫做一元二次方程的概念即 x2 - 173x +7140 = 0 .即 x2 +7x -36=0.即 x2 +x -1 =0. 思考:上述三个方程有什么共同特点?
一个未知数整式方程 (173-x)x=7140x2+(x+7)2=112x2=1-x探究新知一元二次方程2 将上述方程分别进行整理,使方程右边为0,并将左边按
x的降幂排列下列方程哪些是一元二次方程?(3)2x2-5xy+6y=0(6)x2+2x-3=1+x2(1)7x2-6x=0答: (1)、 (2) 、(5)(2)X2-1=0 其中ax2,bx ,c分别称为二次项、一次项和常数项,a, b分别称为二次项系数和一次项系数.
探究新知 归纳:一元二次方程都可以化为ax2+bx+c=0(a,b,c为常数, a≠0)的形式,称为一元二次方程的一般形式 观察 方程 x2 -173x+7140 = 0 . x2 +7x-36=0. x2 +x-1 =0. 说出下列一元二次方程的二次项系数、一次项系数和常数项
1,-5,1
-2,4,0
1,0,-1X2-5x+1=0-2x2+4x=0X2-1=0例:把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数
项.解:将原方程化简为:
9x2+12x+4=4(x2-6x+9)9x2+12x+4=9x2 5x2 + 36 x - 32=0二次项系数为 ,5+ 36- 32一次项系数为 ,常数项为 .536- 324 x2 -24x +36- 4 x2+ 24x- 36+ 12x+ 4=0将下列方程化为一般形式,并分别指出它的二次项系数、一次项系数、常数项:
(1)3x(x+1)=4(x-2)
(2) (x+3)2 =(x+2)(4x-1)
(3)2(y+5)(y-1)=y2 -8
(4)2t=(t+1)23x2-x+8=03x2+x-11=0y2+8y-2=0t2+1=0注:必须将一元二次方程化为一般形式后,才能指出其二次项系数、一次项系数、常数项,而且答案并不唯一
1.关于x的方程(k-3)x2 + 2x-1=0,当k    时,是一元二次方程. 2.关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,当k     时 ,是一元二次方程,当k        时,是一元一次方程.≠3≠±1=-1 一元二次方程都可以化为 ax2+bx+c=0(a,b,c为常数, a≠0)的形式,称为一元二次方程的一般形式关注a的条件 本节课你又学会了哪些新知识呢?
1.会用一元二次方程表示实际生活中的数量关 系
2.什么是一元二次方程,以及它的一般形式
ax2+bx+c=0(a,b,c为常数,a≠0) 和有关概念,如二次项、一次项、常数项、二次项系数、一次项系数.
1.把下列方程化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:3x2-5x+1=0x2 + x-8=0或-7x2 +0 x+4=03-5+11+1-8-70 43-5 111-8-70 4或7x2 - 4=070 - 4-7x2 +4=02.若关于X的方程 是一元二次方程的条件是 m
1、P80习题3.1 1-3题;
祝你成功!解:设竹竿的长为x尺,则门的宽 度为 尺,长为 尺,依题意得方程:从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.(x-4)2+ (x-2)2= x2即x2-12 x +20 = 04尺2尺xx-4x-2(x-4)(x-2)试一试,你能行结束寄语运用方程(方程组)解答相关的实际问题是一种重要的数学思想——方程的思想.
一元二次方程也是刻画现实世界的有效数学模型.