初中数学同步训练必刷题(人教版七年级下册 5.4 平移)
一、单选题(每题3分,共30分)
1.(新人教版数学七年级下册 第五章相交线与平行线5.4平移同步练习)下列情形中,不属于平移的有( )
A.钟表的指针转动 B.电梯上人的升降
C.火车在笔直的铁轨上行驶 D.农村辘轳上水桶的升降
2.(2022七下·巴彦期末)最近北京2022年冬奥会的吉祥物“冰墩墩”成为了互联网的“顶流”,他呆萌的形象受到了人们的青睐,结合你所学知识,能够通过如图平移得到的选项是( )
A. B.
C. D.
3.(2022七下·湖里期末)如图,将△ABC沿边AC所在直线平移至△EDF处,则下列结论错误的是( )
A.BD∥CF B.AE = CF
C.∠A = ∠BDE D.AB = EF
4.(2022七下·阳江期末)如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看成是由“基本图案”经过平移得到的是( )
A. B.
C. D.
5.(2022七下·泗洪期末)如图,将周长为7的沿方向平移1个单位得到,则四边形的周长是( )
A.11 B.10 C.9 D.8
6.(2021七下·平定期末)如图,△ABC平移到△DEF的位置,则下列说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有( )
A.①② B.①④ C.②③ D.②④
7.(2022七下·宜宾期末)如图:有、、三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )
A.户最长 B.户最长 C.户最长 D.三户一样长
8.(2022七下·五华期末)如图,将三角形ABC向左平移3个单位长度,得到三角形DEF.若四边形ABFD的周长为20个单位长度,则三角形ABC的周长是( )
A.17个单位长度 B.14个单位长度
C.11个单位长度 D.8个单位长度
9.(新人教版数学七年级下册 第五章相交线与平行线5.4平移同步练习)如图所示,由△ABC平移得到的三角形的个数是( )
A.5 B.15 C.8 D.6
10.(新人教版数学七年级下册 第五章相交线与平行线5.4平移同步练习)在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有( )
A.①②③ B.①②④ C.①③④ D.①③④⑤
二、填空题(每题3分,共24分)
11.(2022七下·资阳期末)如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是 .
12.(2022七下·平原期末)如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是 .
13.(2021七上·平阳月考)如图,将△ABC沿AB方向平移3个单位长度得到△DEF,若DB=1,若四边形AEFC的面积为20,则三角形ABC的面积为 .
14.(2022七下·西青期末)如图,一块长方形草地的长为,宽为,草地中间有一条弯曲的小路,小路的左边线向右平移就是它的右边线,则这块草地的绿地面积为 .
15.(2022七下·通城期末)如图,沿直线向下平移可以得到,如果,那么等于 .
16.(2022七下·侯马期末)将直角三角形ABC沿CB方向平移BE的距离后,得到直角三角形DEF,已知AG=4,BE=7,DE=10,则阴影部分的面积 .
17.(2022·石景山模拟)如图,将沿BC方向平移一定的距离得到.请写出一条正确的结论,可以为 .
18.(华师大版七年级数学下册10.2.1图形的平移同步练习)如图,是一块从一个边长为20cm的正方形BCDM材料中剪出的垫片,经测得FG=9cm,则这个剪出的图形的周长是 cm.
三、解答题(共8题,共66分)
19.(2022七下·杭州期中)如图,在边长为1个单位长度的正方形网格中有一个三角形ABC,请按下列要求作图.
⑴把三角形ABC向右平移3个单位长度得到三角形A1B1C1;
⑵把三角形A1B1C1向上平移4个单位长度得到三角形A2B2C2.
20.(2022七下·黄陂月考)如图是一块长方形的草地,长为21m.宽为15m.在草地上有两条宽为1米的小道,长方形的草地上除小道外长满青草.求长草部分的面积为多少?
21.(2019·武汉)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F
22.(2021七下·爱辉期末)如图,已知△ABC中,∠ABC=90°,边BC=12cm,把△ABC向下平移至△DEF后,AD=5cm,GC=4cm,请求出图中阴影部分的面积.
23.(2019七下·恩施月考)河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.
24.(2021七下·铜官期中)如图所示,在长方形中有两条对称的等宽折条和一条长方形的横条,其中,,,,求阴影部分面积.
25.(2022七下·淮北期末)如图,在三角形ABC中,,将沿射线BC方向平移,得到,A,B,C的对应点分别是D,E,F,AD∥BF.
(1)请说明;
(2)若,当时,求AD的长.
26.(2022七下·余姚竞赛)如图,将△ABC沿射线AB的方向移动2cm到△DEF的位置.
(1)找出图中所有平行的直线;
(2)找出图中与AD相等的线段,并写出其长度;
(3)若∠ABC=65°,求∠BCF的度数.
答案解析部分
1.【答案】A
【知识点】生活中的平移现象
【解析】【解答】A项钟表的指针是属于旋转,其他选项都是平移 ,故选A
【分析】能够运用数学知识解释生活中的现象和规律体现应用数学广泛的实践性.
2.【答案】C
【知识点】图形的平移
【解析】【解答】解:根据平移的定义,将所给图形沿一个方向移动,只可以得到C选项的图形,A,B,D选项通过旋转可以得到.
故答案为:C.
【分析】在平面内,把一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移;据此判断即可.
3.【答案】D
【知识点】平移的性质
【解析】【解答】解:∵将△ABC沿边AC所在直线平移至△EDF处,
∴A,E,C,F四点共线,,
∴,
∴A选项说法正确,不符合题意;
∵将△ABC沿边AC所在直线平移至△EDF处,
∴,
∴,即,
∴B选项说法正确,不符合题意;
∵将△ABC沿边AC所在直线平移至△EDF处,
∴,
∵,
∴,
∴,
∴C选项说法正确,不符合题意;
∵将△ABC沿边AC所在直线平移至△EDF处,
∴,
∴D选项说法错误,符合题意;
故答案为:D.
【分析】A、根据平移的性质"图形经过平移,对应线段相等,对应角相等,对应点所连的线段平行相等"可得BD∥CF;
B、根据平移的性质"图形经过平移,对应线段相等,对应角相等,对应点所连的线段平行相等"和线段的构成可得AE=CF;
C、根据平移的性质"图形经过平移,对应线段相等,对应角相等,对应点所连的线段平行相等"可得∠A=∠DEF,结合平行线的性质可得∠A=∠BDE;
D、根据平移的性质"图形经过平移,对应线段相等,对应角相等,对应点所连的线段平行相等"可得AB=DE.
4.【答案】C
【知识点】图形的平移
【解析】【解答】解:观察图形可知,图像C可以看成由“基本图案”经过平移得到.
故答案为:C.
【分析】根据图形平移的特征求解即可。
5.【答案】C
【知识点】平移的性质
【解析】【解答】解:根据题意,将周长为7的△ABC沿BC方向向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=7,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=9.
故答案为:C.
【分析】根据平移的性质求出AD、BF的长和DF=AC,结合△ABC的周长为7,再计算四边形ABFD的周长即可.
6.【答案】B
【知识点】平移的性质
【解析】【解答】∵A与D、B与E、C与F对应点,∴AB∥DE,AD=CF=BE;①符合题意;
∵∠ACB与∠DFE是对应角,∴∠ACB=∠DFE,②不符合题意;
平移的方向是点C到点F的方向;③不符合题意;
平移距离为线段BE的长,④符合题意.
正确的说法为①④,
故答案为:B.
【分析】根据平移的性质对每个说法一一判断即可。
7.【答案】D
【知识点】平移的性质
【解析】【解答】解:∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,
∴将a向右、向上平移即可得到b、c,
∵图形的平移是全等的,即不改变图形大小和形状,
∴三户一样长.
故答案为:D.
【分析】由题意可得:将a向右、向上平移即可得到b、c,然后根据平移的性质进行解答.
8.【答案】B
【知识点】平移的性质
【解析】【解答】解:∵将三角形ABC向左平移3个单位长度,得到三角形DEF,
∴AD=CF=3个单位长度,
∵四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=20个单位长度,
∴AB+BC+AC=20-3-3=14个单位长度,即三角形ABC的周长是14个单位长度,
故答案为:B.
【分析】先求出AD=CF=3个单位长度,再求出AB+BC+AC=20-3-3=14个单位长度,最后计算求解即可。
9.【答案】A
【知识点】图形的平移
【解析】【解答】△ABC经过平移后得到的三角形有一个顶角向下,图中这样的三角形有5个,即得A.
【分析】把握平移是沿直线方向的移动,图形的形状在某方向上不变,这是区分平移和旋转的重要方法.
10.【答案】D
【知识点】平移的性质
【解析】【解答】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;
②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;
③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;
④∵经过平移,对应点所连的线段平行且相等,∴△ABC在平移过程中,对应边中点所连线段的长等于平移的距离,正确;
⑤∵移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;
∴①、③、④、⑤都符合平移的基本性质,都正确.
故选:D.
【分析】根据图形平移的基本性质,对①、②、③、④、⑤逐一进行判断,验证其是否正确.
11.【答案】3
【知识点】平移的性质
【解析】【解答】解:根据平移的性质,
平移的距离为:,
故答案为:3.
【分析】平移的性质:(1)在平面内,一个图形平移后得到的图形与原图形的各对应点所连接的线段平行(或在用一条直线上)且相等,并且等于平移的距离;(2)平移只改变图形的位置,不改变图形的形状和大小.
12.【答案】12cm
【知识点】平移的性质
【解析】【解答】解:∵△ABE向右平移1cm得到△DCF,
∴DF=AE,
∴四边形ABFD的周长=AB+BE+DF+AD+EF,
=AB+BE+AE+AD+EF,
=△ABE的周长+AD+EF,
∵平移距离为1cm,
∴AD=EF=1cm,
∵△ABE的周长是10cm,
∴四边形ABFD的周长=10+1+1=12cm.
故答案为12cm.
【分析】利用平移的性质可得DF=AE,再利用周长公式和等量代换可得四边形ABFD的周长=△ABE的周长+AD+EF,求出AD=EF=1cm,再结合△ABE的周长是10cm,即可得到四边形ABFD的周长。
13.【答案】8
【知识点】三角形的面积;平移的性质
【解析】【解答】解:由平移的性质得:BE=AD=CF=3,
∴AE=AD+DB+BE=3+1+3=7,AB=AD+BD=4,
∴四边形AEFC的面积= (AE+CF)h=20,
解得h=4,
∴△ABC的面积=AB×h=×4×4=8;
故答案为:8.
【分析】根据平移的性质求出AE、CF和AB的长,然后根据梯形AEFC的面积公式求出高h,最后求△ABC的面积即可.
14.【答案】80
【知识点】平移的性质;图形的平移
【解析】【解答】解:如图,利用平移的性质,将被小路隔开的两块“绿地”拼一起可得图2,
图2是长为10m,宽为8m的长方形, 所以面积为10×8=80(m2),
故答案为:80.
【分析】根据平移的性质可得草地为长为10m,宽为8m的长方形,再利用长方形的面积公式计算即可。
15.【答案】3
【知识点】平移的性质;线段的和、差、倍、分的简单计算
【解析】【解答】解:∵△ABC沿直线AB向下平移得到△DEF,
∴AD=BE,
∵AB=8,BD=5,
∴AD=AB-BD=3,
∴BE=3.
故答案为:3.
【分析】根据平移的性质可得AD=BE,根据线段的和差关系可得AD=AB-BD=3,据此解答.
16.【答案】56
【知识点】平移的性质
【解析】【解答】解:由平移的性质可得:AB=DE=12,,
∵为和的公共部分,
∴,
∵,
∴;
故答案为:56.
【分析】根据平移的性质可得,再求出即可。
17.【答案】BC=EF(答案不唯一)
【知识点】平移的性质
【解析】【解答】解:∵沿BC方向平移一定的距离得到,
∴BC=EF或BE=CF或AB=DE或AC=DF或AD=BE或AD=CF,
∴,,,
答案不唯一
【分析】平移前后,对应线段在同一条直线上或平行且相等,对应点的连线在同一条直线上或平行且相等,对应角相等。
18.【答案】98
【知识点】生活中的平移现象
【解析】【解答】把EF平移到MN的位置,把AH平移到MK的位置,把GH平移到AN的位置,
这个垫片的周长:20×4+9×2=98(cm).
答:这个垫片的周长为98cm.
故答案为:98.
【分析】首先把EF平移到MN的位置,把AH平移到MK的位置,把GH平移到AN的位置,根据平移的性质可得这个垫片的周长等于正方形的周长加FG.
19.【答案】解:(1)如图,三角形 A1B1C1即为所求.
(2)如图,三角形 A2B2C2即为所求.
【知识点】作图﹣平移
【解析】【分析】(1)利用平移的性质,将△ABC向右平移3个单位,可得到对应点A1,B1,C1,然后画出△A1B1C1.
(2)将△A1B1C1向上平移4个单位,可得到对应点A2,B2,C2,然后画出△A2B2C2.
20.【答案】解:设长草部分的面积为,依题意知
答:长草部分的面积为280平方米.
【知识点】图形的平移
【解析】【分析】根据图形的平移将两条小路平移到AD边与AB边,可得长满青草的部分是一个长为21-1=20m,宽为15-1=14m的长方形,利用长方形的面积公式求解即可.
21.【答案】证明:∵CE∥DF,
∴∠ACE=∠D,
∵∠A=∠1,
∴180° ∠ACE ∠A=180° ∠D ∠1,
∵∠E=180° ∠ACE ∠A,∠F=180° ∠D ∠1,
∴∠E=∠F.
【知识点】平行线的性质;平移的性质
【解析】【分析】利用平行线的性质,易证∠ACE=∠D,再由∠A=∠1,利用三角形内角和定理,可证得结论。
22.【答案】解:∵把△ABC向下平移至△DEF,
∴BC=EF=12cm,△ABC≌△DEF,
∴阴影部分面积=梯形BGEF的面积,
∵GC=4cm,
∴BG=12﹣4=8cm,
∴阴影部分面积=×(8+12)×5=50cm2.
【知识点】平移的性质
【解析】【分析】根据平移的性质可得BC=EF=12cm,△ABC≌△DEF, 然后求出BG,根据阴影部分面积=梯形BGEF的面积, 求出梯形BGEF的面积即可。
23.【答案】解:利用图形平移的性质及连接两点的线中,线段最短,可知:
.
而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.
【知识点】两点之间线段最短;平移的性质
【解析】【分析】设B、D、E三点要使BD+DE最小,则三点在同一直线上即可.
24.【答案】解:经过多次平移变换后,该图案变为如图,
【知识点】平移的性质;图形的平移
【解析】【分析】利用平移的性质可得,,再利用割补法列出算式求解即可。
25.【答案】(1)解:∵将沿射线BC方向平移,得到,
∴AC∥DF,
∴∠DAC+∠ADF=180°,
∵AD∥BF,
∴∠ADF+∠F=180°,
∴∠DAC=∠F;
(2)解:∵将沿射线BC方向平移,得到,
∴AD=BE,
∵,
∴BE=2EC,
∵,
∴BE+EC=2EC+EC=6cm,
∴EC=2cm.
【知识点】平行线的性质;图形的平移
【解析】【分析】 (1)平移的性质得到AC∥DF, 直线平行同旁内角互补,即可得到 ;
(2)平移的性质得到AD=BE, 再根据题意即可解得AD的长。
26.【答案】(1)解:∵△ABC沿射线AB的方向移动2cm到△DEF,
∴AE∥CF,AC∥DF,BC∥EF.
(2)解:∵△ABC沿射线AB的方向移动2cm到△DEF,
∴AD=CF=BE=2cm.
(3)解:∵AE∥CF,∠ABC=65°,
∴∠BCF=∠ABC=65°.
【知识点】坐标与图形变化﹣平移
【解析】【分析】(1)根据平移性质,对应点连线相互平行,即可得出AE∥CF,AC∥DF,BC∥EF;
(2)根据平移性质,对应点连接的线段为平移距离,即可得出AD=CF=BE=2cm;
(3)根据平行线性质,即两直线平行,内错角相等,即可得出∠BCF=∠ABC=65°.
1 / 1初中数学同步训练必刷题(人教版七年级下册 5.4 平移)
一、单选题(每题3分,共30分)
1.(新人教版数学七年级下册 第五章相交线与平行线5.4平移同步练习)下列情形中,不属于平移的有( )
A.钟表的指针转动 B.电梯上人的升降
C.火车在笔直的铁轨上行驶 D.农村辘轳上水桶的升降
【答案】A
【知识点】生活中的平移现象
【解析】【解答】A项钟表的指针是属于旋转,其他选项都是平移 ,故选A
【分析】能够运用数学知识解释生活中的现象和规律体现应用数学广泛的实践性.
2.(2022七下·巴彦期末)最近北京2022年冬奥会的吉祥物“冰墩墩”成为了互联网的“顶流”,他呆萌的形象受到了人们的青睐,结合你所学知识,能够通过如图平移得到的选项是( )
A. B.
C. D.
【答案】C
【知识点】图形的平移
【解析】【解答】解:根据平移的定义,将所给图形沿一个方向移动,只可以得到C选项的图形,A,B,D选项通过旋转可以得到.
故答案为:C.
【分析】在平面内,把一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移;据此判断即可.
3.(2022七下·湖里期末)如图,将△ABC沿边AC所在直线平移至△EDF处,则下列结论错误的是( )
A.BD∥CF B.AE = CF
C.∠A = ∠BDE D.AB = EF
【答案】D
【知识点】平移的性质
【解析】【解答】解:∵将△ABC沿边AC所在直线平移至△EDF处,
∴A,E,C,F四点共线,,
∴,
∴A选项说法正确,不符合题意;
∵将△ABC沿边AC所在直线平移至△EDF处,
∴,
∴,即,
∴B选项说法正确,不符合题意;
∵将△ABC沿边AC所在直线平移至△EDF处,
∴,
∵,
∴,
∴,
∴C选项说法正确,不符合题意;
∵将△ABC沿边AC所在直线平移至△EDF处,
∴,
∴D选项说法错误,符合题意;
故答案为:D.
【分析】A、根据平移的性质"图形经过平移,对应线段相等,对应角相等,对应点所连的线段平行相等"可得BD∥CF;
B、根据平移的性质"图形经过平移,对应线段相等,对应角相等,对应点所连的线段平行相等"和线段的构成可得AE=CF;
C、根据平移的性质"图形经过平移,对应线段相等,对应角相等,对应点所连的线段平行相等"可得∠A=∠DEF,结合平行线的性质可得∠A=∠BDE;
D、根据平移的性质"图形经过平移,对应线段相等,对应角相等,对应点所连的线段平行相等"可得AB=DE.
4.(2022七下·阳江期末)如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看成是由“基本图案”经过平移得到的是( )
A. B.
C. D.
【答案】C
【知识点】图形的平移
【解析】【解答】解:观察图形可知,图像C可以看成由“基本图案”经过平移得到.
故答案为:C.
【分析】根据图形平移的特征求解即可。
5.(2022七下·泗洪期末)如图,将周长为7的沿方向平移1个单位得到,则四边形的周长是( )
A.11 B.10 C.9 D.8
【答案】C
【知识点】平移的性质
【解析】【解答】解:根据题意,将周长为7的△ABC沿BC方向向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=7,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=9.
故答案为:C.
【分析】根据平移的性质求出AD、BF的长和DF=AC,结合△ABC的周长为7,再计算四边形ABFD的周长即可.
6.(2021七下·平定期末)如图,△ABC平移到△DEF的位置,则下列说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有( )
A.①② B.①④ C.②③ D.②④
【答案】B
【知识点】平移的性质
【解析】【解答】∵A与D、B与E、C与F对应点,∴AB∥DE,AD=CF=BE;①符合题意;
∵∠ACB与∠DFE是对应角,∴∠ACB=∠DFE,②不符合题意;
平移的方向是点C到点F的方向;③不符合题意;
平移距离为线段BE的长,④符合题意.
正确的说法为①④,
故答案为:B.
【分析】根据平移的性质对每个说法一一判断即可。
7.(2022七下·宜宾期末)如图:有、、三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )
A.户最长 B.户最长 C.户最长 D.三户一样长
【答案】D
【知识点】平移的性质
【解析】【解答】解:∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,
∴将a向右、向上平移即可得到b、c,
∵图形的平移是全等的,即不改变图形大小和形状,
∴三户一样长.
故答案为:D.
【分析】由题意可得:将a向右、向上平移即可得到b、c,然后根据平移的性质进行解答.
8.(2022七下·五华期末)如图,将三角形ABC向左平移3个单位长度,得到三角形DEF.若四边形ABFD的周长为20个单位长度,则三角形ABC的周长是( )
A.17个单位长度 B.14个单位长度
C.11个单位长度 D.8个单位长度
【答案】B
【知识点】平移的性质
【解析】【解答】解:∵将三角形ABC向左平移3个单位长度,得到三角形DEF,
∴AD=CF=3个单位长度,
∵四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=20个单位长度,
∴AB+BC+AC=20-3-3=14个单位长度,即三角形ABC的周长是14个单位长度,
故答案为:B.
【分析】先求出AD=CF=3个单位长度,再求出AB+BC+AC=20-3-3=14个单位长度,最后计算求解即可。
9.(新人教版数学七年级下册 第五章相交线与平行线5.4平移同步练习)如图所示,由△ABC平移得到的三角形的个数是( )
A.5 B.15 C.8 D.6
【答案】A
【知识点】图形的平移
【解析】【解答】△ABC经过平移后得到的三角形有一个顶角向下,图中这样的三角形有5个,即得A.
【分析】把握平移是沿直线方向的移动,图形的形状在某方向上不变,这是区分平移和旋转的重要方法.
10.(新人教版数学七年级下册 第五章相交线与平行线5.4平移同步练习)在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有( )
A.①②③ B.①②④ C.①③④ D.①③④⑤
【答案】D
【知识点】平移的性质
【解析】【解答】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;
②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;
③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;
④∵经过平移,对应点所连的线段平行且相等,∴△ABC在平移过程中,对应边中点所连线段的长等于平移的距离,正确;
⑤∵移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;
∴①、③、④、⑤都符合平移的基本性质,都正确.
故选:D.
【分析】根据图形平移的基本性质,对①、②、③、④、⑤逐一进行判断,验证其是否正确.
二、填空题(每题3分,共24分)
11.(2022七下·资阳期末)如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是 .
【答案】3
【知识点】平移的性质
【解析】【解答】解:根据平移的性质,
平移的距离为:,
故答案为:3.
【分析】平移的性质:(1)在平面内,一个图形平移后得到的图形与原图形的各对应点所连接的线段平行(或在用一条直线上)且相等,并且等于平移的距离;(2)平移只改变图形的位置,不改变图形的形状和大小.
12.(2022七下·平原期末)如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是 .
【答案】12cm
【知识点】平移的性质
【解析】【解答】解:∵△ABE向右平移1cm得到△DCF,
∴DF=AE,
∴四边形ABFD的周长=AB+BE+DF+AD+EF,
=AB+BE+AE+AD+EF,
=△ABE的周长+AD+EF,
∵平移距离为1cm,
∴AD=EF=1cm,
∵△ABE的周长是10cm,
∴四边形ABFD的周长=10+1+1=12cm.
故答案为12cm.
【分析】利用平移的性质可得DF=AE,再利用周长公式和等量代换可得四边形ABFD的周长=△ABE的周长+AD+EF,求出AD=EF=1cm,再结合△ABE的周长是10cm,即可得到四边形ABFD的周长。
13.(2021七上·平阳月考)如图,将△ABC沿AB方向平移3个单位长度得到△DEF,若DB=1,若四边形AEFC的面积为20,则三角形ABC的面积为 .
【答案】8
【知识点】三角形的面积;平移的性质
【解析】【解答】解:由平移的性质得:BE=AD=CF=3,
∴AE=AD+DB+BE=3+1+3=7,AB=AD+BD=4,
∴四边形AEFC的面积= (AE+CF)h=20,
解得h=4,
∴△ABC的面积=AB×h=×4×4=8;
故答案为:8.
【分析】根据平移的性质求出AE、CF和AB的长,然后根据梯形AEFC的面积公式求出高h,最后求△ABC的面积即可.
14.(2022七下·西青期末)如图,一块长方形草地的长为,宽为,草地中间有一条弯曲的小路,小路的左边线向右平移就是它的右边线,则这块草地的绿地面积为 .
【答案】80
【知识点】平移的性质;图形的平移
【解析】【解答】解:如图,利用平移的性质,将被小路隔开的两块“绿地”拼一起可得图2,
图2是长为10m,宽为8m的长方形, 所以面积为10×8=80(m2),
故答案为:80.
【分析】根据平移的性质可得草地为长为10m,宽为8m的长方形,再利用长方形的面积公式计算即可。
15.(2022七下·通城期末)如图,沿直线向下平移可以得到,如果,那么等于 .
【答案】3
【知识点】平移的性质;线段的和、差、倍、分的简单计算
【解析】【解答】解:∵△ABC沿直线AB向下平移得到△DEF,
∴AD=BE,
∵AB=8,BD=5,
∴AD=AB-BD=3,
∴BE=3.
故答案为:3.
【分析】根据平移的性质可得AD=BE,根据线段的和差关系可得AD=AB-BD=3,据此解答.
16.(2022七下·侯马期末)将直角三角形ABC沿CB方向平移BE的距离后,得到直角三角形DEF,已知AG=4,BE=7,DE=10,则阴影部分的面积 .
【答案】56
【知识点】平移的性质
【解析】【解答】解:由平移的性质可得:AB=DE=12,,
∵为和的公共部分,
∴,
∵,
∴;
故答案为:56.
【分析】根据平移的性质可得,再求出即可。
17.(2022·石景山模拟)如图,将沿BC方向平移一定的距离得到.请写出一条正确的结论,可以为 .
【答案】BC=EF(答案不唯一)
【知识点】平移的性质
【解析】【解答】解:∵沿BC方向平移一定的距离得到,
∴BC=EF或BE=CF或AB=DE或AC=DF或AD=BE或AD=CF,
∴,,,
答案不唯一
【分析】平移前后,对应线段在同一条直线上或平行且相等,对应点的连线在同一条直线上或平行且相等,对应角相等。
18.(华师大版七年级数学下册10.2.1图形的平移同步练习)如图,是一块从一个边长为20cm的正方形BCDM材料中剪出的垫片,经测得FG=9cm,则这个剪出的图形的周长是 cm.
【答案】98
【知识点】生活中的平移现象
【解析】【解答】把EF平移到MN的位置,把AH平移到MK的位置,把GH平移到AN的位置,
这个垫片的周长:20×4+9×2=98(cm).
答:这个垫片的周长为98cm.
故答案为:98.
【分析】首先把EF平移到MN的位置,把AH平移到MK的位置,把GH平移到AN的位置,根据平移的性质可得这个垫片的周长等于正方形的周长加FG.
三、解答题(共8题,共66分)
19.(2022七下·杭州期中)如图,在边长为1个单位长度的正方形网格中有一个三角形ABC,请按下列要求作图.
⑴把三角形ABC向右平移3个单位长度得到三角形A1B1C1;
⑵把三角形A1B1C1向上平移4个单位长度得到三角形A2B2C2.
【答案】解:(1)如图,三角形 A1B1C1即为所求.
(2)如图,三角形 A2B2C2即为所求.
【知识点】作图﹣平移
【解析】【分析】(1)利用平移的性质,将△ABC向右平移3个单位,可得到对应点A1,B1,C1,然后画出△A1B1C1.
(2)将△A1B1C1向上平移4个单位,可得到对应点A2,B2,C2,然后画出△A2B2C2.
20.(2022七下·黄陂月考)如图是一块长方形的草地,长为21m.宽为15m.在草地上有两条宽为1米的小道,长方形的草地上除小道外长满青草.求长草部分的面积为多少?
【答案】解:设长草部分的面积为,依题意知
答:长草部分的面积为280平方米.
【知识点】图形的平移
【解析】【分析】根据图形的平移将两条小路平移到AD边与AB边,可得长满青草的部分是一个长为21-1=20m,宽为15-1=14m的长方形,利用长方形的面积公式求解即可.
21.(2019·武汉)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F
【答案】证明:∵CE∥DF,
∴∠ACE=∠D,
∵∠A=∠1,
∴180° ∠ACE ∠A=180° ∠D ∠1,
∵∠E=180° ∠ACE ∠A,∠F=180° ∠D ∠1,
∴∠E=∠F.
【知识点】平行线的性质;平移的性质
【解析】【分析】利用平行线的性质,易证∠ACE=∠D,再由∠A=∠1,利用三角形内角和定理,可证得结论。
22.(2021七下·爱辉期末)如图,已知△ABC中,∠ABC=90°,边BC=12cm,把△ABC向下平移至△DEF后,AD=5cm,GC=4cm,请求出图中阴影部分的面积.
【答案】解:∵把△ABC向下平移至△DEF,
∴BC=EF=12cm,△ABC≌△DEF,
∴阴影部分面积=梯形BGEF的面积,
∵GC=4cm,
∴BG=12﹣4=8cm,
∴阴影部分面积=×(8+12)×5=50cm2.
【知识点】平移的性质
【解析】【分析】根据平移的性质可得BC=EF=12cm,△ABC≌△DEF, 然后求出BG,根据阴影部分面积=梯形BGEF的面积, 求出梯形BGEF的面积即可。
23.(2019七下·恩施月考)河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.
【答案】解:利用图形平移的性质及连接两点的线中,线段最短,可知:
.
而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.
【知识点】两点之间线段最短;平移的性质
【解析】【分析】设B、D、E三点要使BD+DE最小,则三点在同一直线上即可.
24.(2021七下·铜官期中)如图所示,在长方形中有两条对称的等宽折条和一条长方形的横条,其中,,,,求阴影部分面积.
【答案】解:经过多次平移变换后,该图案变为如图,
【知识点】平移的性质;图形的平移
【解析】【分析】利用平移的性质可得,,再利用割补法列出算式求解即可。
25.(2022七下·淮北期末)如图,在三角形ABC中,,将沿射线BC方向平移,得到,A,B,C的对应点分别是D,E,F,AD∥BF.
(1)请说明;
(2)若,当时,求AD的长.
【答案】(1)解:∵将沿射线BC方向平移,得到,
∴AC∥DF,
∴∠DAC+∠ADF=180°,
∵AD∥BF,
∴∠ADF+∠F=180°,
∴∠DAC=∠F;
(2)解:∵将沿射线BC方向平移,得到,
∴AD=BE,
∵,
∴BE=2EC,
∵,
∴BE+EC=2EC+EC=6cm,
∴EC=2cm.
【知识点】平行线的性质;图形的平移
【解析】【分析】 (1)平移的性质得到AC∥DF, 直线平行同旁内角互补,即可得到 ;
(2)平移的性质得到AD=BE, 再根据题意即可解得AD的长。
26.(2022七下·余姚竞赛)如图,将△ABC沿射线AB的方向移动2cm到△DEF的位置.
(1)找出图中所有平行的直线;
(2)找出图中与AD相等的线段,并写出其长度;
(3)若∠ABC=65°,求∠BCF的度数.
【答案】(1)解:∵△ABC沿射线AB的方向移动2cm到△DEF,
∴AE∥CF,AC∥DF,BC∥EF.
(2)解:∵△ABC沿射线AB的方向移动2cm到△DEF,
∴AD=CF=BE=2cm.
(3)解:∵AE∥CF,∠ABC=65°,
∴∠BCF=∠ABC=65°.
【知识点】坐标与图形变化﹣平移
【解析】【分析】(1)根据平移性质,对应点连线相互平行,即可得出AE∥CF,AC∥DF,BC∥EF;
(2)根据平移性质,对应点连接的线段为平移距离,即可得出AD=CF=BE=2cm;
(3)根据平行线性质,即两直线平行,内错角相等,即可得出∠BCF=∠ABC=65°.
1 / 1