5、牛顿运动定律综合应用

文档属性

名称 5、牛顿运动定律综合应用
格式 zip
文件大小 214.7KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2014-03-15 14:25:28

图片预览

文档简介

牛顿运动定律综合应用
一、超重与失重
1.超重
(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况.
(2)产生条件:物体具有向上的加速度.
2.失重
(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况.
(2)产生条件:物体具有向下的加速度.
3.完全失重
(1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的情况称为完全失重现象.
(2)产生条件:物体的加速度a=g,方向竖直向下.
1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).
2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.
3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.
4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma.
例题:
1.关于超重和失重的下列说法中,正确的是 (  )
A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了
B.物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用
C.物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态
D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化
2.下列说法正确的是 (  )
A.体操运动员双手握住单杠吊在空中不动时处于失重状态
B.蹦床运动员在空中上升和下落过程中都处于失重状态
C.举重运动员在举起杠铃后不动的那段时间内处于超重状态
D.游泳运动员仰卧在水面静止不动时处于失重状态
3.在探究超重和失重规律时,某体重为G的同学站在一压力传感器上完成一次下蹲动作,传感器和计算机相连,经计算机处理后得到压力F随时间t变化的图象,则下列图象中可能正确的是 (  )
4.在升降电梯内的地板上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示.在这段时间内下列说法中正确的是 (  )
A.晓敏同学所受的重力变小了
B.晓敏对体重计的压力小于体重计对晓敏的支持力
C.电梯一定在竖直向下运动
D.电梯的加速度大小为g/5,方向一定竖直向下
超重和失重现象的判断技巧
1.从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态.
2.从加速度的角度判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.
3.从速度变化角度判断
(1)物体向上加速或向下减速时,超重;
(2)物体向下加速或向上减速时,失重.
二、动力学临界极值问题
1.当物体的运动从一种状态转变为另一种状态时必然有一个转折点,这个转折点所对应的状态叫做临界状态;在临界状态时必须满足的条件叫做临界条件.用变化的观点正确分析物体的受力情况、运动状态变化情况,同时抓住满足临界值的条件是求解此类问题的关键.
2.临界或极值条件的标志
(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;
(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;
(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;
(4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度.
例题1:如图所示,质量为m=1 kg的物块放在倾角为θ=37°的斜面体上,斜面体质量为M=2 kg,斜面体与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,试确定推力F的取值范围.(sin 37°=0.6,cos 37°=0.8,g=10 m/s2)
例题2:如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为mA=6 kg,mB=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则 (  )
A.当拉力F<12 N时,物体均保持静止状态
B.两物体开始没有相对运动,当拉力超过12 N时,开始相对运动
C.两物体从受力开始就有相对运动
D.两物体始终没有相对运动
常见动力学中的典型临界条件
1.接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力FN=0.
2.相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.
3.绳子断裂与松驰的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松驰的临界条件是:FT=0.
4.加速度变化时,速度达到最大的临界条件:当加速度变化为a=0时.
三、传送带模型
1.模型特征
一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.
2.建模指导
传送带模型问题包括水平传送带问题和倾斜传送带问题.
(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.
(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.
例题1:如图所示,传送带保持v0=1 m/s
的速度运动,现将一质量m=0.5 kg的物体从传送带左端放上,设物体与传送带间动摩擦因数μ=0.1,传送带两端水平距离x=2.5 m,则物体从左端运动到右端所经历的时间为 (  )
A. s B.(-1) s
C.3 s D.5 s
例题2:如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2.求:
(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;
(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.
例题3:如图所示,水平传送带AB长L=10 m,向右匀速运动的速度v0=4 m/s,一质量为1 kg的小物块(可视为质点)以v1=6 m/s的初速度从传送带右端B点冲上传送带,物块与传送;带间的动摩擦因数μ=0.4,g取10 m/s2.求:
(1)物块相对地面向左运动的最大距离;
(2)物块从B点冲上传送带到再次回到B点所用的时间.
分析处理传送带问题时需要特别注意两点:一是对物体在初态时所受滑动摩擦力的方向的分析;
二是对物体在达到传送带的速度时摩擦力的有无及方向的分析.
四、滑块—木板模型
1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.
2.建模指导
解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系
或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.
例题1:
例题2:如图所示,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F=8 N,当小车向右运动的速度达
到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:
(1)小物块放上后,小物块及小车的加速度各为多大?
(2)小车的长度L是多少?
高考模拟:
1.(2012·江苏·4)将一只皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比.下列描绘皮球在上升过程中加速度大小a与时间t关系的图象,可能正确的是 (  )
2.(2011·福建理综·16)如图甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则 (  )
A.t2时刻,小物块离A处的距离达到最大
B.t2时刻,小物块相对传送带滑动的距离达到最大
C.0~t2时间内,小物块受到的摩擦力方向先向右后向左
D.0~t3时间内,小物块始终受到大小不变的摩擦力作用
3.(2010·浙江理综·14)如图所示,A、B两物体叠放在一起,以相同的初速度上抛(不计空气阻力).下列说法正确的是 (  )
A.在上升和下降过程中A对B的压力一定为零
B.上升过程中A对B的压力大于A物体受到的重力
C.下降过程中A对B的压力大于A物体受到的重力
D.在上升和下降过程中A对B的压力等于A物体受到的重力
4.(2012·安徽理综·22)质量为0.1 kg的弹性球从空中某高度由静止开始下落,该下落过程对应的v-t图象如图所示.弹性球与水平地面相碰后离开地面时的速度大小为碰撞前的.设球受到的空气阻力大小恒为f,取g=10 m/s2,求:
(1)弹性球受到的空气阻力f的大小;
(2)弹性球第一次碰撞后反弹的高度h.
5. 如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g,现对物块施加一水平向右的拉力F,则木板加速度大小a可能是 (  )
A.a=μg B.a=
C.a= D.a=-
6.如图15所示,光滑水平面上放置质量分别为m、2m和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为FT.现用水平拉力F拉质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是 (  )
A.质量为2m的木块受到四个力的作用
B.当F逐渐增大到FT时,轻绳刚好被拉断
C.当F逐渐增大到1.5FT时,轻绳还不会被拉断
D.当轻绳刚要被拉断时,质量为m和2m的木块间的摩擦力为FT