第三课时
学习内容:成反比例的量。课本P42-43例3及做一做。
学习目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、提高抽象概括能力和判断推理能力。
学习重点:引导学生理解反比例的意义。
学习难点:利用反比例的意义,正确判断两种量是否成反比例。
教学流程:
【课前独学】
一、旧知铺垫
1、下表中的两种量是不是成正比例?为什么?
购买练习的本数(本) 1 2 4 6 9
总价(元) 0.80 1.60 3.20 4.80 7.20
2、成正比例的量的特征是 。
3、圆柱的体积=( )○( )
二、自学课本第42-43页例3,完成下面各题。
1、分别计算出每组数据相应的体积,完成统计表。
2、观察表格,探索水的高度和底面积的变化规律。
(1)从表中我发现,底面积增加,水位( ),底面积减少,水位( ),水的高度随着底面积的变化而( ),它们是两种( )量,
(2)计算并比较两种量中相对应的两个数的乘积,我发现:水的高度和底面积的乘积( ),也就是 。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做( ),它们的关系叫做( )。如果用字母X和Y表示两种相关联的量,用K表示它们的乘积(一定),反比例关系可以用下面的式子表示: 。
【课中导学】
三、情境导入
1、课件演示:把相同体积的水倒入底面积不同的杯子。
2、从演示中我发现 。
3、对,杯子的底面积越大,水的高度反而越低。这就是我们今天要研究的常见的数量关系中的另外一种特征——成反比例的量。
教师板书:成反比例的量
四、独学检测
1、出示例3表格与例1表格。
(1)观察后说一说例3与例1有什么不同?
(2)例3中相关联的两个量是什么?
(3)根据记录的数据,你能发现这两个相关联的量有什么特点?
(4)表中每两个相对应的数的乘积各是多少?这个300实际上是什么呢?那么积都是300立方厘米,是一定的,就说明什么是一定的呢?
(5)这个关系式该怎样写?
2、小组交流展示
(1)用字母表示出例3中的数量关系式。
(2)说说例1中两个相关联的量,水的高度和底面积之间的关系有什么特点?
3、互批独学第一、二题,并进行星级评价。
五、合作探究
1、课件出示:加工一批零件,每小时加工的个数和所需的时间如下表。
每小时加工个数 60 30 20 15 12 ……
加工时间(小时) 5 10 15 20 25 ……
2、思考并在小组内交流以下问题。
(1)哪两个两量是相关联的?
(2)由上表可以发现什么特征?
(3)这两个相关联的量之间关系有什么特征?
(4)写成关系式是什么?
3、与例题3比较,这两个例题有什么共同点?
4、小组试着概括反比例关系和成反比例的量的定义(各小组记录员进行记录)。
六、展示合作学习成果
七、小组评价、质疑、优化
【课堂检测】
1、找一找生活中还有哪些成反比例的量?举出例子。
2、完成课本P43做一做。
3、在体积计算中,体积、高、底面积之间有什么关系?
当底面积一定时,体积与高成( )比例关系;
当体积一定时,底面积与高成( )比例关系。
【总结评价】
1、今天我们学习了什么?你能说说正比例和反比例的相同点与不同点吗?
2、自我评价:
( ) ( ) ( ) ( )
第四课时
学习内容:正反比例的量练习课。课本P45-47练习七第4、6-11题。
学习目标:
1、通过比较,进一步理解正反比例的意义,弄清它们的联系和区别。
2、掌握正反比例的量的变化规律,能正确判断正反比例的关系。
3、进一步提高分析、比较、抽象、概括等数学能力。
学习重点:弄清正反比例的联系和区别,判断正反比例关系。
学习难点:正确判断生活中正反比例的关系。
教学流程:
【课前独学】
一、判断下面每题中的两种量是成正比例还是成反比例?
1、速度一定,路程和时间。 ( )
2、正方形的边长和它的面积。( )
3、生产总时间一定,生产一个零件所用时间和零件总数。( )
4、中国儿童报的订数和钱数。 ( )
二、我能独立完成课本P46第6-9题。
我的疑问:
【知识链接】看课本P47你知道吗?
【课中导学】
三、激情导入
这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。
板书课题:正、反比例的比较
四、独学检测
1、说一说:在小组内说说独学内容,统一思想。
2、秀一秀:各小组展示独学内容,组际之间相互质疑提问。
3、批一批:2人对子互批独学第一、二题,并进行星级评价。
五、合作探究
1、观察统计表。
表一:
路程/千米 40 80 160 200 320
时间/时 1 2 4 5 8
表二 :
速度(千米/时) 120 90 60 40 30
时间/时 3 4 6 9 12
2、小组内说一说:
(1)从表1中,我发现 ,我是通过 发现速度是一定的,根据 判断路程和时间成 。
(2)从表2中,我发现 ,我是通过 发现路程是一定的,根据 判断速度和时间成 。
(3)路程、速度、时间这三个量中每两个量之间有什么样的比例关系?
速度 ○ 时间 ○ 路程 或 路程 ○ 速度 ○ 时间
当速度一定时,路程和时间成 比例关系;
当路程一定时,速度和时间成 比例关系;
当时间一定时,路程和速度成 比例关系。
3、小组讨论:正比例关系和反比例关系有哪些相同点和不同点吗?
4、组内完成P45第4题和P47第11题。
六、各小组展示合作学习成果。
七、组际评价、质疑、优化。
【检测反馈】
1、判断下列两种量是不是成比例关系?是成什么比例关系?
(1)小明从家里步行到学校,步行的速度和时间。( )
(2)前进的路程一定,车轮的直径和滚动的转数。( )
(3)工作效率一定,工作时间和工作量。( )
(4)一根绳子,用去的和剩下的成反比例。( )
2、选择题。
(1)因为24÷x=y,所以x和y( )
A 成正比例 B 成反比例 C 不成比例
(2)三角形的高一定,它的面积和底( )
A 成正比例 B 成反比例 C 不成比例
(3)分子一定,分母和分数值( )
A 成正比例 B 成反比例 C 不成比例
【思维拓展】
已知3a=5b(ab≠0),那么a : b=( ) : ( ) ,b/a= ( )。
【总结评价】
1、通过今天的学习,我知道了
2、本节课我能( )参与小组活动,我认为今天我的表现( ),我的不足之处是( )。
小组评价:
小组评价: