2022-2023学年度第二学期期初考试
高 三 数 学 2023.02
(全卷满分150分,考试时间120分钟)
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若复数z满足i(z+i)=2+i(i为虚数单位),则复数z在复平面内所对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知a,b∈R,则“a<b”是“a<b-1”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
3.已知数列{an}满足2an=an-1+an+1(n≥2),a3+a4+a5+a6+a7=100,则其前9项和等于( )
A.150 B.180 C.300 D.360
4.平面向量,满足+=(3,-2),-=(1,x),且·=0,则x的值为( )
A. B. C.±2 D.±2
5.埃及胡夫金字塔是古代世界建筑奇迹之一,其形状可视为一个正四棱锥,已知该金字塔的塔高与底面边长的比满足黄金比例,即比值约为,则它的侧棱与底面所成角的正切直约为( )
A. B. C. D.
6.已知α,β∈(0,),2tanα=,则tan(2α+β+)=( )
A. B.- C. D.
7.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是3,则对于以下数据:
2x1+1,2x2+1,2x3+1,2x4+1,2x5+1,1,2,3,4,5
下列选项正确的是( )
A.平均数是3,方差是7 B.平均数是4,方差是7
C.平均数是3,方差是8 D.平均数是4,方差是8
8.在平面直角坐标系xOy中,x轴正半轴上从左至右四点A、B、C、D横坐标依次为a-c、a、a+c、2a,y轴上点M、N纵坐标分别为m、-2m(m>0),设满足PA+PC=2a的动点P的轨迹为曲线E,满足QN=2QM的动点Q的轨迹为曲线F,当动点Q在y轴正半轴上时,DQ交曲线E于点P0(异于D),且OP0与BQ交点恰好在曲线F上,则a:c=( )
A. B. C.2 D.3
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.下列说法中正确的有( )
A.= B.+=
C.+++…+=2n D.(1+x)4展开式中二项式系数最大的项为第三项
10.已知实数a,b>0,2a+b=4,则下列说法中正确的有( )
A.+有最小值 B.a2+b2有最小值
C.4a+2b有最小值8 D.lna+lnb有最小值ln2
11.高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数.例如[-3.5]=-4,[3.5]=3.已知函数f(x)=cosx+|cosx|,函数g(x)=[f(x)],则下列说法中正确的有( )
A.函数f(x)在区间(0,π)上单调递增 B.函数f(x)图象关于直线x=kπ(k∈Z)对称
C.函数g(x)的值域是{0,1,2} D.方程g(x)=x只有一个实数根
12.在四面体ABCD的四个面中,有公共棱AC的两个面全等,AD=1,CD=,∠CDA=90°,二面角B-AC-D大小为θ,下列说法中正确的有( )
A.四面体ABCD外接球的表面积为3π B.四面体ABCD体积的最大值为
C.若AD=AB,AD⊥AB,则θ=120° D.若AD=BC,θ=120°,则BD=
三、填空题:本题共4小题,每小题5分,共20分.
13.记Sn为等比数列{an}的前n项和.若S3=4,S6=12,则S9= ▲ .
14.双曲线的左、右焦点分别为F1,F2,且右支上有一点P(p,1),则cos∠F1PF2= ▲ .
15.某个随机数选择器每次从0,1,2,3,4,5,6,7,8,9这10个数字中等可能地选择一个数字,用该随机数选择器连续进行三次选择,选出的数字依次是a,b,c,则概率P(a<b<c)= ▲ .
16.已知函数f(x)=ax2+x,若当x∈[0,1]时,|f(x+1)|≤a+1恒成立,则实数a的取值范围是 ▲ .
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分10分)
已知数列{an}的前n项和为Sn,a1=2,Sn=an+1-2.
(1)求数列{an}的通项公式;
(2)令bn=log2an.
①cn=bnan;②cn=;③cn=(-1)n(bn)2.
从上面三个条件中任选一个,求数列{cn}的前n项和Tn.
注:如果选择多个条件分别解答,按第一个解答计分.
18.(本小题满分12分)
已知△ABC的内角A,B,C的对边分别为a,b,c.A=,b=10,c=6,△ABC的内切圆I的面积为S.
(1)求S的值;
(2)若点D在AC上,且B,I,D三点共线,求·的值.
19.(本小题满分12分)
在三棱柱ABC-A1B1C1中,侧面ACC1A1是菱形,∠A1AC=60°,AA1=2,AC⊥A1B.
(1)求证:BA=BC;
(2)已知AB=,A1B=2,求直线A1B与平面A1B1C所成角的正弦值.
20.(本小题满分12分)
云计算是信息技术发展的集中体现,近年来,我国云计算市场规模持续增长.从中国信息通信研究院发布的《云计算白皮书(2022年)》可知,我国2017年至2021年云计算市场规模数据统计表如下:
年份 2017年 2018年 2019年 2020年 2021年
年份代码x 1 2 3 4 5
云计算市场规模y/亿元 692 962 1334 2091 3229
经计算得:=36.33,=112.85.
(1)根据以上数据,建立y关于x的回归方程 =e(e为自然对数的底数).
(2)云计算为企业降低生产成本、提升产品质量提供了强大助推力.某企业未引入云计算前,单件产品尺寸与标准品尺寸的误差ε~N(0,),其中m为单件产品的成本(单位:元),且P(-1<ε<1)=0.6827;引入云计算后,单件产品尺寸与标准品尺寸的误差ε~N(0,).若保持单件产品的成本不变,则P(-1<ε<1)将会变成多少 若保持产品质量不变(即误差的概率分布不变),则单件产品的成本将会下降多少
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线 =x+的斜率和截距的最小二乘估计分别为=,=-.
若X~N(μ,σ2),则P(|X-μ|<σ)=0.6827,P(X-μ|<2σ)=0.9545,P(|X-μ|<3σ)=0.9973.
21.(本小题满分12分)
已知AB为抛物线G:y2=2px(p>0)的弦,点C在抛物线的准线l上.当AB过抛物线焦点F且长度为8时,AB中点M到y轴的距离为3.
(1)求抛物线G的方程;
(2)若∠ACB为直角,求证:直线AB过定点.
22.(本小题满分12分)
已知函数f(x)=e,x∈R;g(x)=cosx,x∈(-,).(e为自然对数的底数,e≈2.718).
(1)若函数h(x)=af(x)-g(x)在区间(-,)上单调递减,求实数a的取值范围;
(2)是否存在直线l同时与y=f(x)、y=g(x)的图象相切 如果存在,判断l的条数,并证明你的结论;如果不存在,说明理由.2022-2023 学年第二学期期初考试
高三数学参考答案 2023.2
1.D 2.B 3.B 4.C 5.A 6.B 7.D 8.A
9.ABD 10.BC 11.BCD 12.ACD
1 3 3 1
13.28 14. 15. 16.[ , ]
5 25 5 2
17.解:(1) Sn an 1 2 Sn 1 an 2( n 2),
两式相减得 an 1 2an ( n 2) ·············································································· 2 分
a1 2,a2 4 a2 2a1 ··················································································· 3 分
an 1 2an n N
an 1
a 2 0 2 n N 1 an
数列 an 是以 2 为首项,2 为公比的等比数列
a 2nn ; ······································································································ 5 分
说明:结果 a nn 2 对,但漏掉 a2 2a1的扣 1分
(2)由(1)可知bn log2 an log2 2
n n
若选①: cn bn an n 2
n ,
Tn 1 2
1 2 22 3 23 n 2n
2T 1 22 2 23 n 1 2n n 2n 1n ························································ 7 分
2 2n 1
两式相减得: T 2 22 23 2n n 1n n 2
n 1 = n 2 ,
1 2
所以Tn n 1 2
n 1 2 . ··················································································· 10 分
1 1 1 1 1 1
若选②: cn 2 2 ····························· 7 分 4bn 1 4n 1 2n 1
2n 1 2 2n 1 2n 1
1 1 1 1 1 1 1 1 1 1 1 1 1 n
Tn 1 = 1 = ·········· 10 分
2 3 2 3 5 2 5 7 2 2n 1 2n 1 2 2n 1 2n 1
n 2 n
若选③: cn 1 bn 1 n
2
2 2 2 n n 1
当 n为偶数时,Tn 1 2 32 42 n 1 n2 =1 2 n ···· 7 分 2
(n 1)(n 2) 2 n n 1
当 n为奇数时,Tn Tn 1 cn 1 (n 1) . ······························· 10 分
2 2
n n n 1
综上得:Tn 1 . ··················································································· 10 分
2
第 1 页 (共 6 页)
说明:没有“综上得”不扣分
2 2 2 2
18.解:(1)在△ABD 中,由余弦定理得: a b c 2bccos
3
a2 100 36 60 196 ,即 a 14 ······································································· 3 分
1 1 2
设内切圆 I 的半径为 r ,则 S ABC a b c r bcsin
2 2 3
r 3 S r2 3 ······················································································ 6 分
11
(2)法 1:在△ABC中,由(1)结合余弦定理得 cos ABC ,
14
S ABD AB
BD平分 ABC , 点 D 到 AB, BC 的距离相等,故 ,
S CBD BC
S ABD AD AB AD 3 7 3
而 , BD BA BC ················································ 9 分
S CBD CD BC CD 7 10 10
7 3 2 7 11 3
BD BC BA BC BC 6 14 142 105 ····································· 12 分
10 10 10 14 10
11
法 2:在△ABC中,由(1)结合余弦定理得 cos ABC ,
14
依题意可知 I 为内心,故 BD平分 ABC ,设 ABD CBD
2 11 5 7 21
则 cos ABC 2cos 1 , cos , sin ······································ 8 分
14 14 14
BD AB
思路 1:在△ABD 中, ADB ,由正弦定理得 2
3 sin sin 3 3
3 1 21
sin cos sin
3 2 2 7
AB 2 6 3
得 BD sin 3 7 ····················································· 10 分
3 21 2
sin
3 7
BD BC BD BC cos 105 ············································································ 12 分
1 1 1
思路 2: S ABC S ABD S CBD acsin 2 c BD sin a BD sin
2 2 2
5 7
2 6 14
2accos 14 ································································· 10 分 BD 3 7
a c 6 14
BD BC BD BC cos 105 ············································································ 12 分
S ABD AB
思路 3: BD平分 ABC , 点 D 到 AB, BC 的距离相等,故
S CBD BC
S ABD AD AB AD 6
而 , BD 10 , AD 3
S CBD CD BC CD 14
第 2 页 (共 6 页)
2 2 2 2
在△ABD 中,由余弦定理得 BD AD AB 2AD AB cos 3 7 ·························· 10 分
3
BD BC BD BC cos 105 ············································································· 12 分
19.解:(1)连接 A1O ,在三棱柱 ABC A1B1C1中,侧面 ACC1A1 是菱形, A1AC 60 ,
则 AA1C 为正三角形,取 AC 中点为O,则 AC A1O,
又 AC A B , A1B A1O A1, A1B, A1O 平面 A1BO1 ,
所以 AC 平面 A1BO , ························································································ 3 分
因为 BO 平面 A1BO ,所以 AC BO,
因为O是 AC 中点,所以 AB BC . ······································································· 5 分
(2)在边长为 2 的正 AA1C 中, A1O 3 ,
在 ABC 中, AB BC 2 , AC 2 ,则 BO 1,又 A1B 2 ,
所以 A1O
2 BO2 A 21B ,所以 A1O BO , ······························································· 7 分
所以OA1,OB,OC 两两垂直.
以O为原点,OB,OC,OA x, y, z1分别为 轴建立空间直角坐标系O xyz.
则 A(0, 1,0),B(1,0,0),C(0,1,0), A1(0,0, 3),
A1B (1,0, 3), A1C (0,1, 3), A1B1 AB (1,1,0),
设平面 A1B1C 的法向量为 n (x, y, z) ,则
A1B n x y 0
,令 z 1,则 n ( 3, 3,1) ····················································· 10 分
A1C n y 3z 0
设直线 A1B 与平面 A1B1C 所成角为 ,
A B n 21
则 sin | cos A1B,n | |
1 | ,
| A1B || n | 7
21
所以,直线 A1B 与平面 A1B1C 所成角的正弦值为 . ··············································· 12 分
7
20.解:(1)因为 y ebx a ,所以 ln y b x a , ························································ 1 分
5 5
(xi ln yi ) x ln yi
112.85 3 36.33 3.86
所以b i 1 i 1 0.386 , ······················· 4 分
5
2 2 1 4 9 16 25 5 3
2 10
xi nx
i 1
5
1 1
所以 a ln yi b x 36.33 0.386 3 6.108,
5 5
i 1
所以 y ebx a e0.386x 6.108 . ················································································ 6 分
第 3 页 (共 6 页)
4 4
(2)未引入云算力辅助前, ~ N (0, ),所以 0, ,
m m
4
又 P( 1 1) 0.6827 P(| | ) ,所以 1,所以m 4. ··························· 8分
m
1 1
引入云算力辅助后, ~ N (0, ),所以 0, ,
m m
1 1 1
若保持产品成本不变,则m 4, ~ N(0, ) , ,
4 4 2
所以 P( 1 1) P(| | 2 ) 0.9545 ····························································· 10分
1
若产品质量不变,则 1,所以m 1,
m
所以单件产品成本可以下降 4 1 3元. ····································································· 12分
AB xA xB p 8
21.解:(1)设 A(xA , yA) , B(xB , yB ) ,则由题意得 xA xB ,故 p 2 ,
3
2
所以抛物线的方程为 y2 4x . ················································································· 4 分
(2)直线 AB 过定点 (1,0),证明如下:
y2 y2
设C( 1,c), A( 1 , y1) , B(
2 , y2 ) ,直线 AB 的方程: x ty+n(n 0),
4 4
将 x ty+n(n 0)代入 y2 4x 得 y2 4ty 4n 0,
则 0,所以 y1 y2 4t,y1y2 4n, ·································································· 6 分
y2 y2
所以CA ( 1 1, y 21 c) ,CB ( 1, y2 c) ,
4 4
y2 2 2 2
因为 1
y2 y1 +y2
ACB 90 ,所以CA CB=0,即 1+y1y2 c(y1+y2 )+c
2 0,
16 4
即 n2 4t2 2n 1 4n 4tc c2 0, ······································································ 8 分
即 (n 1)2 +(2t c)2 =0,所以 n=1,
所以直线 AB 过定点 (1,0).···················································································· 12 分
.解:( ) h(x) af (x) g(x) aex 222 1 cos x , h '(x) aex 2 sin x .
π π
因为 h(x) af (x) g(x) 在 ( , ) 上单调减,
2 2
π π
所以 x ( , ) , h (x) aex 2 sin x 0恒成立,
2 2
π π sin x
所以 x ( , ) , a 恒成立. ··································································· 2
2 2 ex 2
分
π
sin x π π 2 sin(x )cos x sin x
设M (x) , x ( , ) ,则M (x) 4 ,
ex 2 2 2 ex 2 ex 2
第 4 页 (共 6 页)
π π π π
当 x ( , ) 时,M (x) 0,当 x ( , ) 时,M (x) 0,
2 4 4 2
π π π π
所以M (x)在 ( , ) 上单调递减,在 ( , )上单调递增, ············································ 4 分
2 4 4 2
2
π
π 2 2
所以M (x)min M ( )
2 e 4 ,
4 π 2 2
e4
π
2 2
所以 a e 4 . ····························································································· 5 分
2
(2)存在且仅有一条直线同时与 y f (x) 、 y g(x) 的图象相切. ······························· 6 分
设直线与 y f (x) , y g(x) 的图象分别相切于点 P(x1, y1) ,Q(x2 , y2 ) ,
π π
其中 x1 R, x2 ( , ),且 x1 x 2 , f (x) e
x 2 , g x sin x,
2 2
则在 处的切线方程为: x1 2 x1 2 x1 2 x 2P y e e (x x1) ,即 y e x (1 x1)e
1 ;
在 Q 处的切线方程为: y cos x2 sin x2 (x x2 ) ,即 y xsin x2 cos x2 x2 sin x2 .
所以 x1 2e sin x2 ,…①
x1 2(1 x1)e cos x2 x2 sin x2 ,…②
π
因为 sin x ( 1,1),所以 x0 e 1 22 1,则 x2 ( ,0) .
2
可得 x1 2 ln( sin x2 ),于是有[3 ln( sin x2 )]( sin x2 ) cos x2 x2 sin x2 ,
整理得 (x2 3)sin x2 cos x2 sin x2 ln( sin x2 ) 0. ····················································· 8 分
cos x
法 1:两边同除以 sin x 得 (x2 3)
2 ln( sin x
2 2
) 0 ,
sin x2
要证有且仅有一条直线同时与 y f (x) 、 y g(x) 的图象都相切,
cos x π
只需证函数M (x) x 3 ln( sin x),在 x ( ,0) 上有且仅有一个零点.
sin x 2
π
2 2 cos xsin(x ) sin x cos2 x cos x cos x(sin x cos x)
M ' x 1 4
sin2 x sin x sin2 x sin2 x
π π π
当 x ( , )时,M '(x) 0,当 x ( ,0) 时,M '(x) 0,
2 4 4
π π π
所以M (x)在 ( , ) 上单调递增,在 ( ,0)上单调递减, ······································· 10 分
2 4 4
π π π
M ( ) M ( ) 3 0 ,所以M (x)在 ( , ) 上无零点.
4 2 2 2 4
取 sin x e 3
π
, x0 ( ,0)0 ,则 cos x0 1 e
6 ,
4
第 5 页 (共 6 页)
cos x0 1 e
6
M (x0 ) x0 3 ln( sin x0 ) 3 ln e
3 6 e6 1 6 26 1 0 ,
sin x e 30
π
所以函数M (x)在 ( ,0)上有且仅有一个零点,
4
π
综上,函数M (x)在 ( ,0)上有且仅有一个零点,
2
所以有且仅有一条直线同时与 f (x) , g(x)的图象都相切. ·········································· 12 分
法 2:要证有且仅有一条直线同时与 y f (x) 、 y g(x) 的图象都相切,
π
只需证函数G(x) (x 3)sin x cos x sin x ln( sin x)在 x ( ,0) 上有且仅有一个零点.
2
cos x
G ' x sin x (x 3)cos x sin x cos x ln( sin x) sin x cos x[x 2 ln( sin x)],
sin x
π cos x cos x
设 N x x 2 ln( sin x), x ( ,0),则 N ' x 1 1 ,
2 sin x sin x
π
因为 x ( ,0) ,所以 cos x 0,sin x 0,所以 N '(x) 0,
2
π π π
所以 N(x)在 ( ,0)上单调递增,所以 N x N( ) 2 0,
2 2 2
π
又 cos x 0,所以G '(x) 0,所以G(x)在 ( ,0)上单调递增, ···································· 10 分
2
π π π π π π π
所以G( ) ( 3)sin( ) cos( ) sin( ) ln[ sin( )] 3 0 ,
2 2 2 2 2 2 2
π
取 sin x e 3 , x0 ( ,0)0 ,则 cos x0 1 e
6 ,
4
G(x ) (x 3)sin x cos x sin x 3
cos x 0
0 0 0 0 0 ln( sin x0 ) e x0 3 ln( sin x0 )
sin x0
cos x 1 e 6
其中 x0 3
0 ln( sin x0 ) 3 ln e
3 6 e6 1 6 26 1 0 ,
sin x 30 e
所以G(x0 ) 0,
π
所以函数G(x)在 ( ,0)上有且仅有一个零点,
2
所以有且仅有一条直线同时与 f (x) , g(x)的图象都相切. ·········································· 12 分
第 6 页 (共 6 页)