6.1平方根导学案(第三课时)
学习目标:
了解平方根的概念,会用根号表示数的平方根
了解开方与乘方互为逆运算
会用平方求百以内整数的平方根
我的学习我做主:
学习过程:
一、复习回顾:
想一想:(相信你能行)
(1)9的算术平方根是____。
(2)平方等于9的数是_____ .平方等于0.64的数是____
(3)一对互为相反数的平方有什么关系?
总结:由以上问题可知平方得一个正数的数有 个,并且 。
探究一、
仔细阅读教材44页练习下“思考”——46页例5之前所有内容。标注重点,完成教材中的表格。并思考并回答下列问题:
1.举例说明平方根的概念。并与算术平方根概念区别。
2.什么叫开平方?通过图6.1—2知道平方与开平方互为逆运算。
3.正数的平方根有什么特点?负数有平方根吗?0有平方根吗?
自主小结:
1、一般地, 如果一个数的平方等于,即 ,那么这个数就叫做的 ,记为 ,读作 。例如 和 是9的平方根,也就是说 是9的平方根。
2、求一个数的 的运算,叫做开平方; 与开平方互为逆运算;
探究二、
1、例:求出下列各数的平方根:
(1)100; (2); (3)0.25; (4)0; (5)11; (6)
2、根据上面的计算,思考回答:
(1)正数有几个平方根? 他们有什么关系?
(2)0 的平方根是多少?
(3)负数有平方根吗?
3、归纳:
探究三、
1、例: 你能说出下列各式表示的意思吗?你能求出它们的值吗?
(1) ;(2) ; (3)
2、有意义吗?何时才有意义?为什么?
3、议一议:平方根与算术平方根有什么异同?
探究四:
1、求下列各数中的值:
① ② ③ ④
选作内容
2、已知︱a-2︱+=0,求的平方根.
3、一个正数的两个平方根分别是2和,求a和x的值。
【课堂小结】:本节课你有什么收获?
【课后反思】本节课我最大的收获是
我还存在的疑惑是
我对导学案的建议是
自我检测:
A级
1.如果x的平方等于a,那么x就是a的 ,所以a的平方根是
2.非负数a的平方根表示为
3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 或者
4.即 的平方根是
5.9的算术平方根是( )
A.-3 B.3 C.±3 D.81
6. 64的平方根是( )
A.±8 B.±4 C.±2 D.±
7. 4的平方的倒数的算术平方根是( )
A.4 B. C.- D.
8.计算:
(1)-= (2)=
(3) = (4)±=
B级
9.求下列各数的平方根.
(1)100; (2)0; (3); (4)1; (5)1; (6)0.09
10.的平方根是_______;9的平方根是_______.
11.一个自然数的算术平方根是x,则它后面一个数的算术平方根是( )
A.x+1 B.x2+1 C.+1 D.
12.若2m-4与3m-1是同一个数的平方根,则m的值是( )
A.-3 B.1 C.-3或1 D.-1
13.利用平方根来解下列方程.
(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;