(共31张PPT)
6.2.1 排列(1)
6.2.1 排列(1)
1.分类加法计数原理:
完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法 …在第n类方案中有mn种不同的方法.那么完成这
件事共有 种不同的方法.
2.分步乘法计数原理:
完成一件事,需要分成n个步骤,做 第 1 步有 m1种不同的方法,做第2步有m2种不同的方法…,做 第 n 步 有mn种不同的方法.那 么 完 成这件 事共有 种不同的方法.
回顾旧知
问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的选法?
上午 下午 相应的排法
甲
乙
丙
乙
丙
甲
丙
甲
乙
甲乙
甲丙
乙甲
乙丙
丙甲
丙乙
分析:要完成的一件事情是“选出2名同学参加活动,1名参上午的活动,另1名参加下午的活动”,可以分步完成.
图6.2-1
解:从3名同学中选出2名同学参加活动,1名上午,另1名下午,,可以分两个步骤完成:第1步,确定参加上午活动的同学,从3人中任选1人,有3种选法:第2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从剩下的2人去选,有2种选法.根据分步乘法计数原理,不同选法的种数N=3×2=6. 6种选法如图6.2-1所示
探究新知
若把上面问题中被取的对象叫做元素,于是问题1就可以叙述为:
从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?
不同的排列:ab, ac, ba, bc, ca, cb
不同的排列方法种数: N=3×2=6.
探究新知
问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?
叙述为: 从4个不同的元素a,b,c,d 中任取3个,然后按照一定的 顺序排成一列 共有多少种不同的排列方法?
abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc;
cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.
有此可写出所有的三位数:
123,124,132,134,142,143; 213,214,231,234,241,243,312,314,321,324,341,342; 412,413,421,423,431,432.
百位
十位
个位
不同的排列方法种数: N=4×3×2=24.
探究新知
问题1
从甲、乙、丙3名同学中选出2名参加某天 的 一项活动,其中1名参加上午的活动,1名参加下午的活动,有哪些不同的排法
实质是:从3个不同的元素中,任取2个,按一定的顺序排成一列,有哪些不同的排法.
问题2
从1,2,3,4这4个数中,每次取出3个排成一个三位数,共 可 得到多少个不同的三位数?
实质是:从4个不同的元素中, 任取3个,按照一定的顺序排成一列,写出所有不同的排法.
一般地说,从n个不同的元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同的元素中取出m个元素的一个排列.
探究新知
1.排列:
从n个不同元素中取出m (m ≤ n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
注意:
1).元素不能重复。
2).“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。
3).两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。
4).m<n时的排列叫选排列,m=n时的排列叫全排列。
5).为了使写出的所有排列情况既不重复也不遗漏, 最好采用“树形图”。
(有序性)
(互异性)
探究新知
1.判断下列问题是排列问题吗?
(1)从1,2,3,4四个数字中,任选两个做加法,其不同结果有多少种?
(2)从1,2,3三个数字中,任选两个做除法,其不同结果有多少种?
(3)从1到10十个自然数中任取两个组成点的坐标,可得多少个不同的点的坐标?
(4)平面上有5个点,任意三点不共线,这五点最多可确定多少条射线?可确定多少条直线?
(5)10个学生排队照相,则不同的站法有多少种?
(从中归纳这几类问题的区别)
是排列
不是排列
是排列
是排列
不是排列
是排列
探究新知
例1.某省中学生足球赛每组有6支队,每支队都要与同组的其他各队在主、客场 分别 比赛1场,那么每组共进行多少场比赛?
分析:每组任意2支队之间进行的1场比赛, 可以看作是从该组6支队中选2支,按“主队、客队”的顺序排成一个排列.
解:可以先从6支队选1支队为主队,然后从剩下的5支队中选1支队为客队,按分步乘法计数原理,每组进行的比赛场数为:6×5=30.
探究新知
例2.(1).一张餐桌上有5盘不同的菜,甲、乙、丙3名同学每人从中各取1盘菜,共有多少种不同的取法?
(2).学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同学每人从中选一种,共有多少种不同的选法?.
分析:3名同学每人从5盘不同菜中取1盘菜,可看作从5盘菜中任取3盘放在3个位置(给3名同学)的一个排列; 而3名同学每人从食堂窗口的5种菜中选1种,每人都有5种选法,不能看成一个排列.
解:(1).可以先从这5盘菜中取1盘给同学甲,然后从剩下4盘菜中取1盘给同学乙,最后从剩下的3盘菜中取1盘给同学丙.按分步乘法计数原理,不同的取法种数为:5×4×3=60.
(2).可以先让同学甲从5种菜中选1种,有5种选法;再让同学乙从从5种菜中选1种,有5种选法; 最后让同学丙从5种菜中选1种,有5种选法. 按分步乘法计数原理,不同的取法种数为:5×5×5=125.
探究新知
2).写出从5个元素a,b,c,d,e中任取2个元素的所有排列.
解决办法是先画“树形图”,再由此写出所有的排列,共20个.
若把这题改为:写出从5个元素a,b,c,d,e中任取3个元素的所有排列,结果如何呢?
方法仍然照用,但数字将更大,写起来更“啰嗦”.
变式1).在A、B、C、D四位候选人中选举正、副班长各一人共有几种不同的选法?写出所有可能的选举结果.
AB AC AD BA BC BD CA CB CD DA DB DC
研究一个排列问题,往往只需知道所有排列的个数而无需一一写出所有的排列,那么能否不通过一一写出所有的排列而直接“得”出所有排列的个数呢?接下来我们将来共同探讨这个问题:排列数及其公式.
探究新知
2.排列数:
从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同的元素中取出m个元素的排列数。用符号 表示。
“排列”和“排列数”有什么区别和联系?
“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序排成一列,不是数;
“排列数”是指:从n个不同元素中,任取m个元素所有排列的个数,是一个数;所以符号 只表示排列数,而不表示具体的排列.
探究新知
1)中是求从3个不同元素中取出2个元 素的排列数,记为 ,已经算得
2)中是求从4个不同元素中取出3个元素的排列数,记为 ,已经算出
探究:
探究新知
3).从n个不同元素中取出2个元素的排列数是多少
呢?
呢?
……
第1位
第2位
第3位
第m位
n种
(n-1)种
(n-2)种
(n-m+1)种
探究新知
(1)排列数公式(1):
当m=n时,
正整数1到n的连乘积,叫做n的阶乘,用 表示。
n个不同元素的全排列公式:
(2)排列数公式(2):
为了使当m=n时上面的公式也成立,规定:
!
n
探究新知
例3. 计算:
(1 )
(2)
(3 )
解:(1)
(3)
(2)
(4)
(4)
探究新知
例4.证明:
证明:右边
探究新知
变式:
由n=18,n-m+1=8,得m=11
18
11
8
15
探究新知
题型一 排列的概念
【例1】 判断下列问题是否为排列问题.
(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);
(2)选2个小组分别去植树和种菜;
(3)选2个小组去种菜;
(4)选10人组成一个学习小组;
(5)选3个人分别担任班长、学习委员、生活委员;
(6)某班40名学生在假期相互通信.
新知探索
解 (1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.
(2)植树和种菜是不同的,存在顺序问题,属于排列问题.
(3),(4)不存在顺序问题,不属于排列问题.
(5)中每个人的职务不同,例如甲当班长与当学习委员是不同的,存在顺序问题,属于排列问题.
(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.
所以在上述各题中(2),(5),(6)属于排列问题.
新知探索
规律方法 判断一个具体问题是否为排列问题的方法
新知探索
变1 下列问题是排列问题吗?
(1)从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同的可能?
(2)从1,2,3,4四个数字中,任选两个做除法,其结果有多少种不同的可能?
(3)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排3位客人入座,又有多少种方法?
解 (1)不是;(2)是;(3)第一问不是,第二问是.
理由:由于加法运算满足交换律,所以选出的两个元素做加法求结果时,与两个元素的位置无关,但列除法算式时,两个元素谁作除数,谁作被除数不一样,此时与位置有关.选出3个座位与顺序无关,“入座”问题同“排队”,与顺序有关,故选3个座位安排3位客人入座是排列问题.
新知探索
题型二 排列的列举问题
【例2】 (1)从1,2,3,4四个数字中任取两个数字组成无重复数字的两位数,一共可以组成多少个?
(2)写出从4个元素a,b,c,d中任取3个元素的所有排列.
解 (1)由题意作“树状图”,如下.
故组成的所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个.
新知探索
(2)由题意作“树状图”,如下.
故所有的排列为abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.
新知探索
规律方法 利用“树状图”法解决简单排列问题的适用范围及策略
(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.
(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列.
新知探索
变2 写出A,B,C,D四名同学站成一排照相,A不站在两端的所有可能
站法.
解 由题意作“树状图”,如下,
故所有可能的站法是BACD,BADC,BCAD,BDAC,CABD,CADB,CBAD,CDAB,DABC,DACB,DBAC,DCAB.
新知探索
题型三 排列的简单应用
【例3】 用具体数字表示下列问题.
(1)从100个两两互质的数中取出2个数,其商的个数;
(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;
(3)有4名大学生可以到5家单位实习,若每家单位至多招1名实习生,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.
新知探索
解 (1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其商共有100×99=9 900(个).
(2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,共有3×2×1=6(个).
(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,共有5×4×3×2=120(个)分配方案.
规律方法 要想正确地表示排列问题的排列个数,应弄清这件事中谁是分步的主体,分清m个元素和n(m≤n)个不同的位置各是什么.
新知探索
变3 (1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?
(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?
解 (1)从7本不同的书中选3本送给3名同学,相当于从7个不同元素中任取3个元素的一个排列,所以共有7×6×5=210(种)不同的送法.
(2)从7种不同的书中买3本书,这3本书并不要求都不相同,根据分步乘法计数原理知,共有7×7×7=343(种)不同的送法.
新知探索
1.排列:从n个不同元素中选出m(m≤n)个元素,并按
一定的顺序排成一列.
2.关键点: 1.互异性(被选、所选元素互不相同)
2.有序性(所选元素有先后位置等顺序之分)
3.排列数:所有排列总数
课堂小结