算法案例(第一课时)[下学期]

文档属性

名称 算法案例(第一课时)[下学期]
格式 rar
文件大小 10.7KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2005-12-10 21:36:00

图片预览

文档简介

课件8张PPT。算 法 案 例(第一课时)1、求两个正整数的最大公约数(1)求25和35的最大公约数
(2)求49和63的最大公约数2、求8251和6105的最大公约数 所以,25和35的最大公约数为5所以,49和63的最大公约数为7辗转相除法(欧几里得算法)观察用辗转相除法求8251和6105的最大公约数的过程 第一步 用两数中较大的数除以较小的数,求得商和余数 8251=6105×1+2146结论: 8251和6105的公约数就是6105和2146的公约数,求8251和6105的最大公约数,只要求出6105和2146的公约数就可以了。第二步 对6105和2146重复第一步的做法 6105=2146×2+1813 同理6105和2146的最大公约数也是2146和1813的最大公约数。 为什么呢?思考:从上述的过程你体会到了什么?完整的过程8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0例2 用辗转相除法求225和135的最大公约数225=135×1+90135=90×1+4590=45×2显然37是148和37的最大公约数,也就是8251和6105的最大公约数 显然45是90和45的最大公约数,也就是225和135的最大公约数 思考1:从上面的两个例子可以看出计算的规律是什么? S1:用大数除以小数S2:除数变成被除数,余数变成除数S3:重复S1,直到余数为0 辗转相除法是一个反复执行直到余数等于0停止的步骤,这实际上是一个循环结构。m = n × q + r用程序框图表示出右边的过程r=m MOD nm = nn = rr=0?是否思考2:辗转相除法中的关键步骤是哪种逻辑结构? 《九章算术》——更相减损术 算理:可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之。第一步:任意给顶两个正整数;判断他们是否都是偶数。若是,则用2约简;若不是则执行第二步。第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止,则这个等数就是所求的最大公约数。例3 用更相减损术求98与63的最大公约数解:由于63不是偶数,把98和63以大数减小数,并辗转相减 98-63=35 63-35=28 35-28=7 28-7=21
21-7=21
14-7=7所以,98和63的最大公约数等于7 练习:课本P36练习第1题