第五章 一元函数的导数及应用 章末检测(二)(含答案)

文档属性

名称 第五章 一元函数的导数及应用 章末检测(二)(含答案)
格式 zip
文件大小 128.6KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-02-22 07:07:01

文档简介

第五章 一元函数的导数及应用 章末检测(二)(答案)
一、单项选择
1、如图,函数y=f(x)在[x1,x2],[x2,x3],[x3,x4]这几个区间内,平均变化率最大的一个区间是( D )
A.[x1,x2] B.[x2,x3]
C.[x1,x3] D.[x3,x4]
2、设f(x)=xln x,若f′(x0)=2,则x0的值为( B )
A.e2 B.e
C. D.ln 2
3、已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是( B )
4、已知曲线y=aex+xln x在点(1,ae)处的切线方程为y=2x+b,则( D )
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 D.a=e-1,b=-1
5、已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是( D )
A.a>- B.0C.a>或-
6、函数f(x)=在[2,+∞)上的最小值为( A )
A. B.e2 C. D.2e
7、已知a=,b=,c=,则a、b、c的大小关系为( C )
A.b<c<a B.c<a<b
C.a<c<b D.c<b<a
8、若函数f(x)=(1-x)·(x2+ax+b)的图象关于点(-2,0)对称,x1,x2分别是f(x)的极大值点与极小值点,则x2-x1=( C )
A.- B.2
C.-2 D.
二、多项选择题
9、已知函数f(x)的图象如图,f′(x)是f(x)的导函数,则下列结论正确的是( BCD )
A.f′(3)>f′(2)
B.f′(3)<f′(2)
C.f(3)-f(2)>f′(3)
D.f(3)-f(2)<f′(2)
10、已知函数f(x)=,则下列结论正确的是( ABC )
A.函数f(x)存在两个不同的零点
B.函数f(x)既存在极大值又存在极小值
C.当-e<k≤0时,方程f(x)=k有且只有两个实根
D.若x∈[t,+∞)时,f(x)max=,则t的最小值为2
11、对于函数f(x)=16ln(1+x)+x2-10x,下列说法正确的是( ACD )
A.x=3是函数f(x)的一个极值点
B.f(x)的单调递增区间是(-1,1),(2,+∞)
C.f(x)在区间(1,2)上单调递减
D.直线y=16ln 3-16与函数f(x)的图象有3个交点
12、定义在上的函数f(x),已知f′(x)是它的导函数,且恒有cos x·f′(x)+sin x·f(x)<0成立,则有( CD )
A.f>f     B.f>f
C.f>f     D.f>f
三、填空题
13、曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为____2x-y=0____.
14、已知x=1是函数f(x)=(x2+ax)ex的一个极值点,则曲线y=f(x)在点(0,f(0))处的切线斜率为___-_____.
15、若函数f(x)=x-sin 2x+asin x在(-∞,+∞)上单调递增,则a的取值范围是_____ _____.
16、设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为__(-∞,-3)∪(0,3)______.
四、解答题
17、求下列函数的导数.
(1)y=x2sin x;(2)y=ln x+;
(3)y=;(4)y=xsincos.
解 (1)y′=(x2)′sin x+x2(sin x)′
=2xsin x+x2cos x.
(2)y′=′=(ln x)′+′
=-.
(3)y′=′=
=-.
(4)∵y=xsincos
=xsin(4x+π)=-xsin 4x,
∴y′=-sin 4x-x·4cos 4x
=-sin 4x-2xcos 4x.
18、已知曲线y=x3+x-2在点P0处的切线l1平行于直线4x-y-1=0,且点P0在第三象限.
(1)求P0的坐标;
(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.
解:(1)由y=x3+x-2,得y′=3x2+1.
令3x2+1=4,解得x=±1.
当x=1时,y=0;
当x=-1时,y=-4.
又点P0在第三象限,所以切点P0的坐标为(-1,-4). 
(2)因为直线l⊥l1,l1的斜率为4,
所以直线l的斜率为-.
因为直线l过切点P0,点P0的坐标为(-1,-4),
所以直线l的方程为y+4=-(x+1),
即x+4y+17=0.
19、已知g(x)=2x+ln x-.
(1)若函数g(x)在区间[1,2]内单调递增,求实数a的取值范围;
(2)若g(x)在区间[1,2]上存在单调递增区间,求实数a的取值范围.
解 (1)g(x)=2x+ln x-(x>0),
g′(x)=2++(x>0).
∵函数g(x)在[1,2]上单调递增,
∴g′(x)≥0在[1,2]上恒成立,
即2++≥0在[1,2]上恒成立,
∴a≥-2x2-x在[1,2]上恒成立,
∴a≥(-2x2-x)max,x∈[1,2].
在[1,2]上,(-2x2-x)max=-3,
所以a≥-3.
∴实数a的取值范围是[-3,+∞).
(2)g(x)在[1,2]上存在单调递增区间,
则g′(x)>0在[1,2]上有解,
即a>-2x2-x在[1,2]上有解,
∴a>(-2x2-x)min,
又(-2x2-x)min=-10,∴a>-10.
20、某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2.其中3(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
解:(1)因为x=5时,y=11,所以+10=11,a=2.
(2)由(1)可知,该商品每日的销售量
y=+10(x-6)2,所以商场每日销售该商品所获得的利润f(x)=(x-3)[JB([]+10(x-6)2
=2+10(x-3)(x-6)2,3从而,f′(x)=30(x-4)(x-6).
于是,当x变化时,f′(x),f(x)的变化情况如下表:
x (3,4) 4 (4,6)
f′(x) + 0 -
f(x) ↗ 极大值42 ↘
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.
所以,当x=4时,函数f(x)取得最大值,且最大值等于42.
即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.
21、设函数f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f′(x)为f(x)的导函数.
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{-3,1,3}中,求f(x)的极小值.
解 (1)因为a=b=c,
所以f(x)=(x-a)(x-b)(x-c)=(x-a)3.
因为f(4)=8,所以(4-a)3=8,解得a=2.
(2)因为b=c,所以f(x)=(x-a)(x-b)2=x3-(a+2b)x2+b(2a+b)x-ab2,从而f′(x)=3(x-b)·.
令f′(x)=0,得x=b或x=.
令f(x)=0,得x=a或x=b.
因为a,b,都在集合{-3,1,3}中,
且a≠b,
所以=1,a=3,b=-3.
此时,f(x)=(x-3)(x+3)2,f′(x)=3(x+3)(x-1).
令f′(x)=0,得x=-3或x=1.
当x变化时,f′(x)变化如下表:
x (-∞,-3) -3 (-3,1) 1 (1,+∞)
f′(x) + 0 - 0 +
f(x) ? 极大值 ? 极小值 ?
所以f(x)的极小值为f(1)=(1-3)(1+3)2=-32.
22、已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.
解:(1)易知f(x)的定义域为(0,+∞),
当a=-1时,f(x)=-x+ln x,f′(x)=-1+=,令f′(x)=0,得x=1.
当00;当x>1时,f′(x)<0.
所以f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
所以f(x)max=f(1)=-1.
所以当a=-1时,函数f(x)在(0,+∞)上的最大值为-1.
(2)f′(x)=a+,x∈(0,e],∈.
①若a≥-,则f′(x)≥0,从而f(x)在(0,e]上是增函数,所以f(x)max=f(e)=ae+1≥0,不符合题意;
②若a<-,令f′(x)>0得a+>0,结合x∈(0,e],解得0令f′(x)<0得a+<0,结合x∈(0,e],解得-令-1+ln=-3,得ln=-2,
即a=-e2.
因为-e2<-,所以a=-e2为所求.
故实数a的值为-e2.第五章 一元函数的导数及应用 章末检测(二)
一、单项选择
1、如图,函数y=f(x)在[x1,x2],[x2,x3],[x3,x4]这几个区间内,平均变化率最大的一个区间是(  )
A.[x1,x2] B.[x2,x3]
C.[x1,x3] D.[x3,x4]
2、设f(x)=xln x,若f′(x0)=2,则x0的值为(  )
A.e2 B.e
C. D.ln 2
3、已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是(  )
4、已知曲线y=aex+xln x在点(1,ae)处的切线方程为y=2x+b,则(  )
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 D.a=e-1,b=-1
5、已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是(  )
A.a>- B.0C.a>或-
6、函数f(x)=在[2,+∞)上的最小值为(  )
A. B.e2 C. D.2e
7、已知a=,b=,c=,则a、b、c的大小关系为(  )
A.b<c<a B.c<a<b
C.a<c<b D.c<b<a
8、若函数f(x)=(1-x)·(x2+ax+b)的图象关于点(-2,0)对称,x1,x2分别是f(x)的极大值点与极小值点,则x2-x1=(  )
A.- B.2
C.-2 D.
二、多项选择题
9、已知函数f(x)的图象如图,f′(x)是f(x)的导函数,则下列结论正确的是(  )
A.f′(3)>f′(2)
B.f′(3)<f′(2)
C.f(3)-f(2)>f′(3)
D.f(3)-f(2)<f′(2)
10、已知函数f(x)=,则下列结论正确的是(  )
A.函数f(x)存在两个不同的零点
B.函数f(x)既存在极大值又存在极小值
C.当-e<k≤0时,方程f(x)=k有且只有两个实根
D.若x∈[t,+∞)时,f(x)max=,则t的最小值为2
11、对于函数f(x)=16ln(1+x)+x2-10x,下列说法正确的是(  )
A.x=3是函数f(x)的一个极值点
B.f(x)的单调递增区间是(-1,1),(2,+∞)
C.f(x)在区间(1,2)上单调递减
D.直线y=16ln 3-16与函数f(x)的图象有3个交点
12、定义在上的函数f(x),已知f′(x)是它的导函数,且恒有cos x·f′(x)+sin x·f(x)<0成立,则有(  )
A.f>f     B.f>f
C.f>f     D.f>f
三、填空题
13、曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为________.
14、已知x=1是函数f(x)=(x2+ax)ex的一个极值点,则曲线y=f(x)在点(0,f(0))处的切线斜率为________.
15、若函数f(x)=x-sin 2x+asin x在(-∞,+∞)上单调递增,则a的取值范围是__________.
16、设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为________.
四、解答题
17、求下列函数的导数.
(1)y=x2sin x;(2)y=ln x+;
(3)y=;(4)y=xsincos.
18、已知曲线y=x3+x-2在点P0处的切线l1平行于直线4x-y-1=0,且点P0在第三象限.
(1)求P0的坐标;
(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.
19、已知g(x)=2x+ln x-.
(1)若函数g(x)在区间[1,2]内单调递增,求实数a的取值范围;
(2)若g(x)在区间[1,2]上存在单调递增区间,求实数a的取值范围.
20、某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2.其中3(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
21、设函数f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f′(x)为f(x)的导函数.
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{-3,1,3}中,求f(x)的极小值.
22、已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.