(共18张PPT)
17.2勾股定理逆定理(2)
人教版八年级下册
教学目标
1.灵活应用勾股定理及其逆定理解决实际问题.(重点)
2.将实际问题转化成用勾股定理的逆定理解决的
数学问题.(难点)
新知导入
问题 前面的学习让我们对勾股定理及其逆定理
的知识有了一定的认识,你能说出它们的内容吗
回顾与思考
a2+b2=c2
(a,b为直角边,c为斜边)
Rt△ABC,∠C是直角
勾股定理
勾股定理的逆定理
a2+b2=c2
(a,b为较短边,c为最长边)
Rt△ABC,且∠C是直角.
思考 勾股定理的逆定理能解决哪些实际问题呢?你能举举例吗?
例题讲解
一、勾股定理的逆定理的应用
1
2
例1 如图,某港口P位于东西方向的海岸线上. “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
N
E
P
Q
R
例题讲解
问题1 认真审题,弄清已知是什么?要解决的问题是什么?
1
2
N
E
P
Q
R
16×1.5=24
12×1.5=18
30
“远航”号的航向、两艘船的一个半小时后的航程及距离已知,如图.
问题2 由于我们现在所能得到的都是线段长,要求角,由此你联想到了什么?
实质是要求出两艘船航
向所成角.
勾股定理逆定理
例题讲解
解:根据题意得
PQ=16×1.5=24(海里),
PR=12×1.5=18(海里),
QR=30海里.
∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.
由“远航”号沿东北方向航行可知∠1=45°.
∴∠2=45°,即“海天”号沿西北方向航行.
N
E
P
Q
R
1
2
解决实际问题的步骤: 构建几何模型(从整体到局部); 标注有用信息,明确已知和所求; 应用数学知识求解.
归纳:
例题讲解
例2 一个零件的形状如图 所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图 所示,这个零件符合要求吗
D
A
B
C
4
3
5
13
12
D
A
B
C
图
图
例题讲解
在△BCD中,
∴△BCD 是直角三角形,∠DBC是直角.
因此,这个零件符合要求.
解:在△ABD中,
∴△ABD 是直角三角形,∠A是直角.
D
A
B
C
4
3
5
13
12
图
例题讲解
例3 如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.
解析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断△ACD是直角三角形.
A
D
B
C
3
4
13
12
例题讲解
解:连接AC.
A
D
B
C
3
4
13
12
在Rt△ABC中,
在△ACD中,
AC2+CD2=52+122=169=AD2,
∴△ACD是直角三角形,
且∠ACD=90°.
∴S四边形ABCD=SRt△ABC+SRt△ACD=6+30=36.
归纳:四边形问题对角线是常用的辅助线,它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是“黄金搭挡”,经常配套使用.
变式练习
【变式题】 如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.
解:连接BD.
在Rt△ABD中,
由勾股定理得 BD2=AB2+AD2,
∴BD=5m.
又∵ CD=12cm,BC=13cm,
∴ BC2=CD2+BD2,∴△BDC是直角三角形.
∴S四边形ABCD=SRt△BCD-SRt△ABD= BD CD- AB AD
= ×(5×12-3×4)=24 (cm2).
C
B
A
D
例题讲解
(1)证明:∵CD=1,BC= 5 ,BD=2,
∴CD2+BD2=BC2,
∴△BDC是直角三角形;
(2)解:设腰长AB=AC=x,
在Rt△ADB中,∵AB2=AD2+BD2,
∴x2=(x-1)2+22,
解得
用到了方程的思想
例4 如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC= ,BD=2.
(1)求证:△BCD是直角三角形;
(2)求△ABC的面积.
课堂小结
勾股定理的逆定理的应用
应用
航海问题
方法
认真审题,画出符合题意的图形,熟练运用勾股定理及其逆
定理来解决问题
与勾股定理结合解决不规则图形等问题
拓展提高
1.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300 m,公园到医院的距离为400 m,若公园到超市的距离为500 m,则公园在医院的 ( )
A.北偏东75°的方向上 B.北偏东65°的方向上
C.北偏东55°的方向上 D.无法确定
B
拓展提高
2.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.
解:∵出发2小时,A组行了12×2=24(km),
B组行了9×2=18(km),
又∵A,B两组相距30km,
且有242+182=302,
∴A,B两组行进的方向成直角.
A
O
B
拓展提高
3、如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则过3s时,求PQ的长.
解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,即AB+BC+AC=36cm,
∴AB=9cm,BC=12cm,AC=15cm.
∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,
BP=9-3×2=3(cm),BQ=12-1×3=9(cm),
在Rt△PBQ中,由勾股定理得
∴3x+4x+5x=36,
解得x=3.
P
C
B
A
Q
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin