5.1.2 垂线和垂线段 教案

文档属性

名称 5.1.2 垂线和垂线段 教案
格式 docx
文件大小 1.1MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-02-23 19:04:00

图片预览

文档简介

中小学教育资源及组卷应用平台
5.1.2 垂线
第1课时 垂线
第2课时 垂线段
课题 第1课时 垂线 第2课时 垂线段 授课人
教 学 目 标 知识技能   1.使学生理解垂直、垂线、垂线段、垂足、点到直线的距离等概念,能运用垂直的定义求角度或判定垂直;理解垂线的性质“在同一平面内,过一点有且只有一条直线与已知直线垂直”. 2.会用三角尺或量角器过一点画一条直线的垂线.
数学思考   经历观察、操作、分析、概括、交流等学习过程,进一步提高学生的作图能力以及运用数学符号进行逻辑推理的能力.
问题解决   通过探索垂线的性质,能解决相关的垂线问题,并能够进行适当的说理.
情感态度   1.通过观察、动手操作、推断、交流等数学活动,进一步发展学生的交流、合作能力及有条理地表达自己思想的意识. 2.通过创设情境,利用变式训练等多种教学手段激发学生的学习兴趣,给学生创造成功的机会,使他们爱学、会学且学会,从而体验成功的快乐.
教学 重点   垂线的定义,垂线的画法,垂线的两个性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直;(2)垂线段最短.
教学 难点   垂线的画法;对点到直线的距离的概念的理解.
授课 类型 新授课 课时
教具 量角器、三角尺、直尺、相交线模型
教学活动
教学 步骤 师生活动 设计意图
活动 一: 创设 情境 导入 新课 【课堂引入】 (学生事先准备两张细长硬纸条, 图钉一个) 课堂操作:学生用图钉在中间把两张 图5-1-32 纸条钉在一起,提示学生可以把两张纸条看作是两条直线,观察两条直线相交有几个交点 转动纸条,观察并思考:两条直线相交所构成的四个角能否相等   通过让学生实际操作,引入相交线所成的角,为理解垂直的定义做认知准备.
活动 二: 探究 与 应用 【探究1】 垂直的定义 1.垂直的定义. (1)如图5-1-33,取两根木条a,b,将它们钉在一起,木条a不动,当木条b转到什么位置时,两根木条互相垂直 (2)转动木条b时,它和不动的木条a互相 图5-1-33 垂直的位置有几个 (3)当a,b相交形成的角中有一个角是直角时,其他三个角的度数是多少 通过模型展示及学生交流使学生明白:当b的位置变化时,∠α从锐角变为钝角,其中∠α是直角是特殊情况.其特殊之处还在于:当∠α是直角时,它的邻补角、对顶角都是直角,即直线a,b相交所形成的四个角都是直角,都相等. 引导学生概括垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 辨析:“互相垂直”与“垂线”的异同:“互相垂直”是指两条直线的位置关系;“垂线”是指在“互相垂直”的前提下,其中一条直线相对于另一条直线的名称.二者都是针对两条直线而言的,单独一条直线不能称为“垂直”或“垂线”. 2.垂直的符号表示. 垂直用符号“⊥”来表示,“⊥”读作“垂直于”.如图5-1-34,直线AB垂直于直线CD,垂足为O,则记作AB⊥CD,垂足为O,一般在图中任意一个直角处作上直角记号. 图5-1-34   通过探究,让学生独立思考,动手操作,经历探索过程,发现结论.培养学生归纳探究的能力及逻辑推理能力.
活动 二: 探究 与 应用 3.用垂直的定义进行推理. (1)如图5-1-34,你能说出由什么条件就能知道AB与CD互相垂直吗 因为∠BOC=90°(已知), 所以AB⊥CD(垂直的定义). (2)如图5-1-34,如果AB⊥CD,那么可得到什么结论 请补全横线上的内容. 因为AB⊥CD(已知), 所以 ∠BOC=90°(或∠AOC=90°或∠AOD=90°或∠BOD=90°) (垂直的定义). 【应用举例】 例1 如图5-1-35,点O在直线BD上,OC⊥OA,则∠1和∠2的数量关系是 互余(或∠1+∠2=90°) . 图5-1-35 图5-1-36 变式 如图5-1-36,AB,CD相交于点O,EO⊥AB,∠1=20°,则∠2的度数是 (C) A.40°     B.60°     C.70°     D.80° 【探究2】 垂线的性质1 让学生用三角尺或量角器画已知直线的垂线. (1)如图5-1-37,现有一条已知直线AB,分别过直线外一点C和直线上一点D,作直线AB的垂线,你有几种方法 图5-1-37 (2)通过上述方法画出的垂线有几条 从中你能发现什么结论 学生独立思考,动手操作,自主探索.经过思考、操作,发现对于问题(1)可以有下列两种方法来画垂线: ①用量角器; ②用三角尺,如图5-1-38. 图5-1-38 教师在学生动手操作后演示课件“用三角尺作垂线”,让学生进一步感受画垂线的过程. 师生共同总结画垂线的方法: (1)用三角尺. 让三角尺的一条直角边落在已知直线上,沿直线左右移动三角尺,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线,简单说成“一落,二移,三画”. (2)用量角器. 学生通过思考得到:在同一平面内,过一点有且只有一条直线与已知直线垂直. 注意:(1)在同一平面内,经过直线上一点或直线外一点画已知直线的垂线,只能画出一条.    引导学生总结画垂线的一般方法.
活动 二: 探究 与 应用   (2)如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在射线的反向延长线或线段的延长线上. 【应用举例】 例2 如图5-1-39,点O在直线a上,若OA⊥a于点O,OB⊥a于点O,则直线OA,OB是同一条直线,根据是 在同一平面内,过一点有且只有一条直线与已知直线垂直 . 图5-1-39 【探究3】 垂线的性质2 1.解释概念. 垂线段:垂线上一点到垂足的线段; 点到直线的距离:直线外一点到这条直线的垂线段的长度. 2.问题:(1)如图5-1-40,在灌溉时需要把河AB中的水引到C处,如何挖渠能使渠道最短 图5-1-40 (2)从上述探究过程中你能发现什么结论 学生可以自主探究,如图5-1-41,先在直线AB上任取一些点,连接这些点和点C,可以发现所连的这些线段中CD最短,此时CD⊥AB,于是找到挖渠方案. 图5-1-41 3.学生归纳:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短. 注意:垂线是直线;垂线段特指一条线段;点到直线的距离是指垂线段的长度,它是一个数量,是有单位的. 【应用举例】 例3 如图5-1-42,在给出的图形上,完成下列作图: (1)作出点A到直线BC的垂线段AD,并量出点A到直线BC的距离; (2)过点B作AC的垂线,垂足为E,过点C作AB的垂线,垂足为F; (3)延长DA,你能发现什么有趣的结论 图5-1-42 图5-1-43 解:(1)如图5-1-43.测量略. (2)如图5-1-43. (3)直线DA,BE,CF相交于同一点. 变式 在图5-1-44中分别画出点A,B到直线CD的垂线段AE,BF. 图5-1-44    培养学生的画图能力、说理能力以及思考问题的严谨性. 通过例题让学生学会画线段的垂线,并感受三角形三边上的高所在的直线相交于一点的这一事实.    通过变式练习进一步巩固垂线的概念及画图.
活动 二: 探究 与 应用 【拓展提升】 例4 如图5-1-45,一辆汽车在直线形公路AB上由A地开往B地,M,N是位于公路两侧的村庄. 图5-1-45 (1)设汽车行驶到公路AB上的点P的位置时,距离村庄M最近;行驶到点Q的位置时,距离村庄N最近,请在图中的公路AB上分别画出点P和点Q的位置. (2)当汽车从A地出发向B地行驶时,在公路AB的哪一段距离M,N两村庄都越来越近 在哪一段距离村庄N越来越近,而距离村庄M越来越远   让学生运用垂线段最短的性质解决生活中的实际问题,让他们感受到数学来源于生活,从而增加他们学习数学的兴趣.
活动 三: 课堂 总结 反思 【当堂训练】 1.下面四种说法: (1)在同一平面内,过一点有一条直线和已知直线垂直; (2)在同一平面内,过一点有且只有一条直线和已知直线垂直; (3)直线的垂线和该直线上的任一线段垂直; (4)对顶角中有一个角是直角时,相邻的边互相垂直. 其中说法正确的有 (D) A.1个   B.2个    C.3个    D.4个 2.如图5-1-46,已知直线EF,CD相交于点O,OA⊥OB,OC平分 ∠AOF.若∠AOE=40°,则∠BOD的度数为 (B) 图5-1-46 A.10° B.20° C.25° D.30° 3.如图5-1-47是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段 AP 的长度. 图5-1-47 4.课本第6页练习. 【课后作业】 课本第8~9页习题5.1第3,4,5,6,7,10,12题.   通过练习进一步巩固所学垂线的概念及性质,且能使教师及时掌握本课教学效果,为后续教学的安排提供依据.
【板书设计】 第1课时 垂线 第2课时 垂线段 垂线   框架图式总结,更容易形成知识网络.
活动 三: 课堂 总结 反思 【教学反思】 ①[授课流程反思] 复习导入,温故知新,图形简单,问题直接,新旧联系较紧密,过渡自然,也能使学生的注意力时刻集中在要学习的知识上,不分散. ②[讲授效果反思] 本节采用“引导发现”法鼓励学生自己去发现、分析、解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形,从直观的感性认识发现抽象的概念,使他们成为探求知识的主体,同时还利用边讲边练的教法让学生对新知加以巩固理解.通过变式训练习题、开放性习题帮助学生逐步树立转化的思想和发展性思维.在授课过程中努力遵循由学生置疑——感知——概括——应用的过程,通过学生积极参与、积极思维,使学生从被动的学习转化到主动探索和发现的学习,使学生感受到学习与探索的乐趣. ③[师生互动反思] ④[习题反思]   好题题号                     错题题号                     回顾反思,找出差距与不足,形成知识及教学体系,更进一步提升教师教学能力.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)