1.3《二元一次方程组的应用》培优专项训练(含解析)湖南省祁阳市浯溪二中2022-2023学年七年级数学湘教版

文档属性

名称 1.3《二元一次方程组的应用》培优专项训练(含解析)湖南省祁阳市浯溪二中2022-2023学年七年级数学湘教版
格式 zip
文件大小 85.5KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2023-02-24 08:43:39

图片预览

文档简介

湖南省祁阳市浯溪二中七年级数学1.3《二元一次方程组的应用》培优专项训练
1.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为(  )
A.30 B.26 C.24 D.22
2.《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金   两.
3.有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货    吨.
4.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为   .
5. 2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?
6.某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.
(1)请问A、B两种苗木各多少株?
(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?
7.我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.
8.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?
9. “绿水青山就是金山银山”,科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg.
(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;
(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?
10.泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.
11.某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.
(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:
年份 进口额/亿元 出口额/亿元 进出口总额/亿元
2020 x y 520
2021 1.25x 1.3y    
(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?
参考答案:
1.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为(  )
A.30 B.26 C.24 D.22
B解析:设1艘大船可载x人,1艘小船可载y人,依题意得:,①+②得:3x+3y=78,∴x+y=26,即1艘大船与1艘小船一次共可以满载游客的人数为26,
2.(2022 枣庄)《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金   两.
解析:设每头牛x两,每只羊y两,根据题意,可得,∴7x+7y=18,∴x+y=,
∴1头牛和1只羊共值金两,故答案为:.
3.有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货  23.5 吨.
解析:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,
根据题意得:,
得:4x+3y=23.5;
故答案为:23.5.
4.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为   .
解析:根据题意,如表格所设:
香樟数量 红枫数量 总量
甲 4x 5y﹣4x 5y
乙 3x 6y﹣3x 6y
丙 9x 7y﹣9x 7y
∵甲、乙两山需红枫数量之比为2:3,
∴,
∴y=2x,
故数量可如下表:
香樟数量 红枫数量 总量
甲 4x 6x 10x
乙 3x 9x 12x
丙 9x 5x 14x
所以香樟的总量是16x,红枫的总量是20x,
设香樟的预算单价为a,红枫的预算单价为b,
由题意得,
[16x (1﹣6.25%)] [a (1﹣20%)]+20x [b (1+25%)]=16x a+20x b,
∴12a+25b=16a+20b,
∴4a=5b,
设a=5k,b=4k,
∴=,
故答案为:.
5. 2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?
解:设冰墩墩毛绒玩具的单价为x元,雪容融毛绒玩具的单价为y元,
依题意得:,
解得:,
答:冰墩墩毛绒玩具的单价为200元,雪容融毛绒玩具的单价为100元.
6.某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.
(1)请问A、B两种苗木各多少株?
(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?
解:(1)设A种苗木有x株,B种苗木有y株,
根据题意,得,
解得,
答:A种苗木有2400株,B种苗木有3600株;
(2)设安排m人种植A种苗木,
根据题意,得,
解得m=100,
经检验,m=100是原方程的根,且符合题意,
350﹣m=350﹣100=250(人),
答:应安排100人种植A种苗木,250人种植B种苗木,才能确保同时完成任务.
7.我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.
解:设每千克有机黑胡椒的售价为x元,每千克有机白胡椒的售价为y元,
依题意得:,解得:.
答:每千克有机黑胡椒的售价为50元,每千克有机白胡椒的售价为60元.
8.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?
解:设学生有x人,该书单价y元,根据题意得:,解得:.
答:学生有7人,该书单价53元.
9.(2022 娄底)“绿水青山就是金山银山”,科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg.
(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;
(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?
解:(1)设一片银杏树叶一年的平均滞尘量为xmg,一片国槐树叶一年的平均滞尘量为ymg,
由题意得:,解得:,
答:一片银杏树叶一年的平均滞尘量为40mg,一片国槐树叶一年的平均滞尘量为22mg;
(2)50000×40=2000000(mg)=2kg,
答:这三棵银杏树一年的平均滞尘总量约2千克.
10.泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.
解:设第一次购进A种茶的价格为x元/盒,B种茶的价格为y元/盒,依题意得:,解得:.
答:第一次购进A种茶的价格为100元/盒,B种茶的价格为150元/盒.
11.某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.
注:进出口总额=进口额+出口额.
(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:
年份 进口额/亿元 出口额/亿元 进出口总额/亿元
2020 x y 520
2021 1.25x 1.3y  1.25x+1.3y 
(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?
解:(1)由表格可得,2021年进出口总额为:1.25x+1.3y,故答案为:1.25x+1.3y;(2)由题意可得,,解得,∴1.25x=400,1.3y=260,答:2021年进口额是400亿元,出口额是260亿元.