登录二一教育在线组卷平台 助您教考全无忧
2023年人教版小学数学五年级下册4.5.1 最小公倍数 同步练习
一、单选题
1.(2022五下·遵义期末)9和36的最小公倍数是( )。
A.36 B.9 C.1 D.72
2.(2021五下·菏泽月考)如果a÷b=3(a、b都为非0自然数),那么下列说法正确的是( )。
A.a是b是因数 B.a与b的公因数是3
C.a与b的最小公倍数是ab D.a与b的最大公因数是b
3.(2021五下·闽侯期末)一个长方形的长和宽分别是12cm和9cm,至少要( )个这样的长方形才能拼成个正方形。
A.6 B.9 C.12 D.24
4.(2022五下·石景山期末)光明小学二年级⑴班有近50人。参加演出时,全班同学无论排成6行还是8行,每行人数都相等,这个班有( )名学生。
A.24 B.36 C.48 D.49
5.暑假里,小东和小强一起去参加书法培训,小东每8天去一次,小强每6天去一次。7月1日他们同时参加培训后,( )他们会再次相遇。
A.7月7日 B.7月9日 C.7月13日 D.7月25日
二、判断题
6.两个自然数的最大公因数一定是这两个数最小公倍数的因数。
7.(2020五下·复兴期末)如果两个数互质,它们乘积就是它们的最小公倍数。( )
8.(2022五下·海丰期末)A÷B=3(A和B都是不为0的整数),那么A和B的最大公因数是B,最小公倍数是A。( )
9.(2022五下·莘县期中)如果a=2×3×5,b=2×3×3,那么a和b的最大公因数是6,最小公倍数是90。( )
10.(2021五下·东昌府期末)相邻的两个自然数,它们的最大公因数是1,最小公倍数是它们的积。( )
三、填空题
11.(2019五下·商丘月考)50以内8的倍数有 ,12的倍数有 ,8和12的公倍数有 .其中最小公倍数是 。
12.求每组数的最小公倍数.
2和12 8和10 9和13 24和16
13.(2019五下·尖草坪期末)有一筐桃,平均分给6个小朋友,正好还剩1个;平均分给8个小朋友,正好也剩1个。如果这筐桃的个数不超过50,那么这筐桃可能有 个,也可能有 个。
14.(2021五下·万州期末)若a÷b=3 (a、b为非0自然数),则a和b的最小公倍数是 ;若m÷n= (m、n为非0自然数),则m和n的最大公因数是 。
15.如果A=2×3×7,B=2×2×2×3,那么A和B最大公因数是 ,最小公倍数是 。
16.(2020五下·兴化期末)用长6厘米,宽4厘米的长方形拼成一个正方形,至少要用 个长方形,正方形的边长是 厘米。
四、计算题
17.(2018五下·云南期末)求出下面每组数的最大公因数和最小公倍数
(1)18和6
(2)12和20
(3)8和9
五、解答题
18.(2020五下·兰山期末)学校舞蹈队的学生总人数在40人以内,这些同学可以分成6人一组,也可以分成9人一组,都能正好分完。学校舞蹈队可能是多少人
19.(2020五下·兴化期末)暑假期间,小林每6天游泳一次,小军每8天游泳一次。7月31日两人在游泳池相遇,八月几日他们又再次相遇?
20.(2020五下·海安期末)有三张正方形纸,边长分别是6分米、18分米和24分米。如果想裁剪成长4分米、宽3分米的长方形小纸片,且没有剩余。选择裁剪哪张正方形纸比较合适,能够裁剪成多少张小长方形纸片?
答案解析部分
1.【答案】A
【知识点】公倍数与最小公倍数
【解析】【解答】解:9和36的最小公倍数是36。
故答案为:A。
【分析】当两个数是倍数关系时,它们的最小公倍数是较大的数。
2.【答案】D
【知识点】因数与倍数的关系;公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:这些说法中,正确的是a与b的最大公因数是b。
故答案为:D。
【分析】a是b的倍数,那么b是a的因数;a与b的公因数是b和1;a与b的最小公倍数是a;a与b的最大公因数是b。
3.【答案】C
【知识点】最小公倍数的应用
【解析】【解答】解:
12和9的最小公倍数是3×4×3
=12×3
=36
(36÷12)×(36÷9)
=3×4
=12(个)
故答案为:C。
【分析】先用短除法求出12和9的最小公倍数是36,也就是说拼成正方形的边长是36厘米,需要长方形的个数=(正方形的边长÷长方形的长)×(正方形的边长÷长方形的宽)。
4.【答案】C
【知识点】最小公倍数的应用
【解析】【解答】解:
6和8的公倍数是:2×3×4
=6×4
=24
24×2=48(名)。
故答案为:C。
【分析】这个班有学生的人数=6和8的最小公倍数×2;求两个数的最小公倍数用短除法求出。
5.【答案】D
【知识点】最小公倍数的应用
【解析】【解答】解:8和6的最小公倍数是24,7月1日+24天=7月25日,所以7月25日他们会再次相遇。
故答案为:D。
【分析】小东每8天去一次,小强每6天去一次,所以他们下一次用时参加间隔的时间就是8和6的最大公因数,然后在7月1日的基础上加上8和6的最大公因数即可。
6.【答案】(1)正确
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:两个自然数(0除外)的最大公因数一定是这两个数最小公倍数的因数,原题干说法正确。
故答案为:正确。
【分析】一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数;所以两个自然数(0除外)的最大公因数一定是这两个数最小公倍数的因数。
7.【答案】(1)正确
【知识点】公倍数与最小公倍数
【解析】【解答】解:两个数互质,它们的乘积就是它们的最小公倍数,说法正确。
故答案为:正确。
【分析】求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数。
8.【答案】(1)正确
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:A÷B=3,表示A和B是倍数关系,A和B的最大公因数是B,最小公倍数是A。说法正确。
故答案为:正确。
【分析】两个数成倍数关系,最大公因数是较小的数,最小公倍数是较大的数。
9.【答案】(1)正确
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:如果a=2×3×5,b=2×3×3,那么a和b的最大公因数是6,最小公倍数是90。
故答案为:正确。
【分析】两个数的最大公因数是两个数公有的质因数的乘积;
两个数的最小公倍数是两个数公有的和各自有的质因数的乘积。
10.【答案】(1)正确
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:相邻的两个自然数,它们的最大公因数是1,最小公倍数是它们的积,原题干说法正确。
故答案为:正确。
【分析】相邻的两个自然数是互质数,互为互质数的两个数的最大公因数是1,最小公倍数是它们的积。
11.【答案】8、16、24、32、40、48;12、24、36、48;24、48;24
【知识点】倍数的特点及求法;公倍数与最小公倍数
【解析】【解答】解:50以内8的倍数有8、16、24、32、40、48,12的倍数有12、24、36、18,8和12的公倍数有24、48,其中最小公倍数是24。
故答案为:8、16、24、32、40、48;12、24、36、18;24、48;24。
【分析】求一个数的倍数,就是用这个数一次乘非0自然数;求两个数的公倍数就是求两个数共有的倍数。
12.【答案】12;40;117;48
【知识点】最小公倍数的应用
【解析】【解答】
12÷2=6,即2和12是倍数关系,所以它们的最小公倍数是12
8=2×2×2,10=2×5,2×2×2×5=40,所以8和10的最小公倍数是40
9和13是互质的两个数,9×13=117,所以它们的最小公倍数是117
24=2×2×2×3,16=2×2×2×2,2×2×2×2×3=48,所以24和16的最小公倍数是48
故答案为:12;40;117;48.
【分析】解答本题的关键是明确对于一般的两个数来说,这两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;对于两个数为倍数关系时,较大的那个数是这两个数的最小公倍数;是互质数的两个数,它们的最小公倍数即这两个数的乘积.
13.【答案】25;49
【知识点】最小公倍数的应用
【解析】【解答】6=2×3;
8=2×2×2;
6和8的最小公倍数是2×3×2×2=24;
如果这筐桃的个数不超过50,那么这筐桃可能有25个,也可能有49个。
故答案为:25;49。
【分析】此题主要考查了最小公倍数的应用,先求出6和8的最小公倍数,然后在指定的范围内求出这筐桃的个数,据此解答。
14.【答案】a;m
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:a和b的最小公倍数是较大的数a;
m÷n=,则n是m的3倍,m和n的最大公因数是较小的数m。
故答案为:a;m。
【分析】当两个数是倍数关系时,较小的数是两个数的最大公因数,较大的数是两个数的最小公倍数。
15.【答案】6;168
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:A和B的最大公因数是:2×3=6;最小公倍数是2×3×7×2×2=168。
故答案为:6;168。
【分析】两个数最大公因数是公有的质因数的乘积,最小公倍数是两个数公有的质因数和独有的质因数的乘积。
16.【答案】6;12
【知识点】最小公倍数的应用
【解析】【解答】解:6和4的最小公倍数是12
12÷6=2(个)
12÷4=3(个)
2×3=6(个)
故答案为:6;12.
【分析】6和4的最小公倍数是拼成的正方形的边长,正方形一个边需要两个6厘米,一个边需要三个4厘米,据此解答。
17.【答案】(1)解:18是6的倍数,最大公因数:6;最小公倍数:18。
(2)解:12=2×2×3,20=2×2×5,最大公因数:4;最小公倍数:60。
(3)解:8和9是互质数,最大公因数:1;最小公倍数:72。
【知识点】最大公因数的应用;最小公倍数的应用
【解析】【分析】把两个数分解质因数,然后把公有的质因数相乘就是它们的最大公因数,把公有和独有的质因数相乘就是它们的最小公倍数;较大数是较小数的倍数,较小数就是它们的最大公因数,较大数就是它们的最小公倍数;互质数的两个数的最小公倍数是两个数的乘积,最大公因数是1。
18.【答案】解:6和9的公倍数有18、36、54、……,所以 学校舞蹈队可能是18人或36人。
答:学校舞蹈队可能是18人,也可能是36人。
【知识点】公倍数与最小公倍数
【解析】【分析】因为分成6人一组和9人一组都能正好分完,所以学生的总人数是6和9的公倍数,只需要公倍数小于40即可。
19.【答案】解:6=2×3,8=2×2×2
6和8的最小公倍数是:2×2×2×3=24
7月31日再过24天是8月24日
答:8月24日他们又再次相遇。
【知识点】最小公倍数的应用;年、月、日时间的推算
【解析】【分析】6和8的最小公倍数就是他们再次相见隔的时间,据此解答。
20.【答案】解:4和3的倍数有12、24、......;
所以选择裁剪边长是24分米的正方形纸比较合适,
能够裁剪成的张数:
(24÷4)×(24÷3)
=6×8
=48(张)
答:选择裁剪边长是24分米的正方形纸比较合适,能够裁剪成48张小长方形纸片。
【知识点】公倍数与最小公倍数
【解析】【分析】正方形的边长如果是4和3的倍数,这样裁剪起来没有剩余,比较合适;
(正方形的边长÷4分米)×(正方形的边长÷3分米)=可以裁剪的个数。
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1登录二一教育在线组卷平台 助您教考全无忧
2023年人教版小学数学五年级下册4.5.1 最小公倍数 同步练习
一、单选题
1.(2022五下·遵义期末)9和36的最小公倍数是( )。
A.36 B.9 C.1 D.72
【答案】A
【知识点】公倍数与最小公倍数
【解析】【解答】解:9和36的最小公倍数是36。
故答案为:A。
【分析】当两个数是倍数关系时,它们的最小公倍数是较大的数。
2.(2021五下·菏泽月考)如果a÷b=3(a、b都为非0自然数),那么下列说法正确的是( )。
A.a是b是因数 B.a与b的公因数是3
C.a与b的最小公倍数是ab D.a与b的最大公因数是b
【答案】D
【知识点】因数与倍数的关系;公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:这些说法中,正确的是a与b的最大公因数是b。
故答案为:D。
【分析】a是b的倍数,那么b是a的因数;a与b的公因数是b和1;a与b的最小公倍数是a;a与b的最大公因数是b。
3.(2021五下·闽侯期末)一个长方形的长和宽分别是12cm和9cm,至少要( )个这样的长方形才能拼成个正方形。
A.6 B.9 C.12 D.24
【答案】C
【知识点】最小公倍数的应用
【解析】【解答】解:
12和9的最小公倍数是3×4×3
=12×3
=36
(36÷12)×(36÷9)
=3×4
=12(个)
故答案为:C。
【分析】先用短除法求出12和9的最小公倍数是36,也就是说拼成正方形的边长是36厘米,需要长方形的个数=(正方形的边长÷长方形的长)×(正方形的边长÷长方形的宽)。
4.(2022五下·石景山期末)光明小学二年级⑴班有近50人。参加演出时,全班同学无论排成6行还是8行,每行人数都相等,这个班有( )名学生。
A.24 B.36 C.48 D.49
【答案】C
【知识点】最小公倍数的应用
【解析】【解答】解:
6和8的公倍数是:2×3×4
=6×4
=24
24×2=48(名)。
故答案为:C。
【分析】这个班有学生的人数=6和8的最小公倍数×2;求两个数的最小公倍数用短除法求出。
5.暑假里,小东和小强一起去参加书法培训,小东每8天去一次,小强每6天去一次。7月1日他们同时参加培训后,( )他们会再次相遇。
A.7月7日 B.7月9日 C.7月13日 D.7月25日
【答案】D
【知识点】最小公倍数的应用
【解析】【解答】解:8和6的最小公倍数是24,7月1日+24天=7月25日,所以7月25日他们会再次相遇。
故答案为:D。
【分析】小东每8天去一次,小强每6天去一次,所以他们下一次用时参加间隔的时间就是8和6的最大公因数,然后在7月1日的基础上加上8和6的最大公因数即可。
二、判断题
6.两个自然数的最大公因数一定是这两个数最小公倍数的因数。
【答案】(1)正确
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:两个自然数(0除外)的最大公因数一定是这两个数最小公倍数的因数,原题干说法正确。
故答案为:正确。
【分析】一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数;所以两个自然数(0除外)的最大公因数一定是这两个数最小公倍数的因数。
7.(2020五下·复兴期末)如果两个数互质,它们乘积就是它们的最小公倍数。( )
【答案】(1)正确
【知识点】公倍数与最小公倍数
【解析】【解答】解:两个数互质,它们的乘积就是它们的最小公倍数,说法正确。
故答案为:正确。
【分析】求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数。
8.(2022五下·海丰期末)A÷B=3(A和B都是不为0的整数),那么A和B的最大公因数是B,最小公倍数是A。( )
【答案】(1)正确
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:A÷B=3,表示A和B是倍数关系,A和B的最大公因数是B,最小公倍数是A。说法正确。
故答案为:正确。
【分析】两个数成倍数关系,最大公因数是较小的数,最小公倍数是较大的数。
9.(2022五下·莘县期中)如果a=2×3×5,b=2×3×3,那么a和b的最大公因数是6,最小公倍数是90。( )
【答案】(1)正确
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:如果a=2×3×5,b=2×3×3,那么a和b的最大公因数是6,最小公倍数是90。
故答案为:正确。
【分析】两个数的最大公因数是两个数公有的质因数的乘积;
两个数的最小公倍数是两个数公有的和各自有的质因数的乘积。
10.(2021五下·东昌府期末)相邻的两个自然数,它们的最大公因数是1,最小公倍数是它们的积。( )
【答案】(1)正确
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:相邻的两个自然数,它们的最大公因数是1,最小公倍数是它们的积,原题干说法正确。
故答案为:正确。
【分析】相邻的两个自然数是互质数,互为互质数的两个数的最大公因数是1,最小公倍数是它们的积。
三、填空题
11.(2019五下·商丘月考)50以内8的倍数有 ,12的倍数有 ,8和12的公倍数有 .其中最小公倍数是 。
【答案】8、16、24、32、40、48;12、24、36、48;24、48;24
【知识点】倍数的特点及求法;公倍数与最小公倍数
【解析】【解答】解:50以内8的倍数有8、16、24、32、40、48,12的倍数有12、24、36、18,8和12的公倍数有24、48,其中最小公倍数是24。
故答案为:8、16、24、32、40、48;12、24、36、18;24、48;24。
【分析】求一个数的倍数,就是用这个数一次乘非0自然数;求两个数的公倍数就是求两个数共有的倍数。
12.求每组数的最小公倍数.
2和12 8和10 9和13 24和16
【答案】12;40;117;48
【知识点】最小公倍数的应用
【解析】【解答】
12÷2=6,即2和12是倍数关系,所以它们的最小公倍数是12
8=2×2×2,10=2×5,2×2×2×5=40,所以8和10的最小公倍数是40
9和13是互质的两个数,9×13=117,所以它们的最小公倍数是117
24=2×2×2×3,16=2×2×2×2,2×2×2×2×3=48,所以24和16的最小公倍数是48
故答案为:12;40;117;48.
【分析】解答本题的关键是明确对于一般的两个数来说,这两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;对于两个数为倍数关系时,较大的那个数是这两个数的最小公倍数;是互质数的两个数,它们的最小公倍数即这两个数的乘积.
13.(2019五下·尖草坪期末)有一筐桃,平均分给6个小朋友,正好还剩1个;平均分给8个小朋友,正好也剩1个。如果这筐桃的个数不超过50,那么这筐桃可能有 个,也可能有 个。
【答案】25;49
【知识点】最小公倍数的应用
【解析】【解答】6=2×3;
8=2×2×2;
6和8的最小公倍数是2×3×2×2=24;
如果这筐桃的个数不超过50,那么这筐桃可能有25个,也可能有49个。
故答案为:25;49。
【分析】此题主要考查了最小公倍数的应用,先求出6和8的最小公倍数,然后在指定的范围内求出这筐桃的个数,据此解答。
14.(2021五下·万州期末)若a÷b=3 (a、b为非0自然数),则a和b的最小公倍数是 ;若m÷n= (m、n为非0自然数),则m和n的最大公因数是 。
【答案】a;m
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:a和b的最小公倍数是较大的数a;
m÷n=,则n是m的3倍,m和n的最大公因数是较小的数m。
故答案为:a;m。
【分析】当两个数是倍数关系时,较小的数是两个数的最大公因数,较大的数是两个数的最小公倍数。
15.如果A=2×3×7,B=2×2×2×3,那么A和B最大公因数是 ,最小公倍数是 。
【答案】6;168
【知识点】公因数与最大公因数;公倍数与最小公倍数
【解析】【解答】解:A和B的最大公因数是:2×3=6;最小公倍数是2×3×7×2×2=168。
故答案为:6;168。
【分析】两个数最大公因数是公有的质因数的乘积,最小公倍数是两个数公有的质因数和独有的质因数的乘积。
16.(2020五下·兴化期末)用长6厘米,宽4厘米的长方形拼成一个正方形,至少要用 个长方形,正方形的边长是 厘米。
【答案】6;12
【知识点】最小公倍数的应用
【解析】【解答】解:6和4的最小公倍数是12
12÷6=2(个)
12÷4=3(个)
2×3=6(个)
故答案为:6;12.
【分析】6和4的最小公倍数是拼成的正方形的边长,正方形一个边需要两个6厘米,一个边需要三个4厘米,据此解答。
四、计算题
17.(2018五下·云南期末)求出下面每组数的最大公因数和最小公倍数
(1)18和6
(2)12和20
(3)8和9
【答案】(1)解:18是6的倍数,最大公因数:6;最小公倍数:18。
(2)解:12=2×2×3,20=2×2×5,最大公因数:4;最小公倍数:60。
(3)解:8和9是互质数,最大公因数:1;最小公倍数:72。
【知识点】最大公因数的应用;最小公倍数的应用
【解析】【分析】把两个数分解质因数,然后把公有的质因数相乘就是它们的最大公因数,把公有和独有的质因数相乘就是它们的最小公倍数;较大数是较小数的倍数,较小数就是它们的最大公因数,较大数就是它们的最小公倍数;互质数的两个数的最小公倍数是两个数的乘积,最大公因数是1。
五、解答题
18.(2020五下·兰山期末)学校舞蹈队的学生总人数在40人以内,这些同学可以分成6人一组,也可以分成9人一组,都能正好分完。学校舞蹈队可能是多少人
【答案】解:6和9的公倍数有18、36、54、……,所以 学校舞蹈队可能是18人或36人。
答:学校舞蹈队可能是18人,也可能是36人。
【知识点】公倍数与最小公倍数
【解析】【分析】因为分成6人一组和9人一组都能正好分完,所以学生的总人数是6和9的公倍数,只需要公倍数小于40即可。
19.(2020五下·兴化期末)暑假期间,小林每6天游泳一次,小军每8天游泳一次。7月31日两人在游泳池相遇,八月几日他们又再次相遇?
【答案】解:6=2×3,8=2×2×2
6和8的最小公倍数是:2×2×2×3=24
7月31日再过24天是8月24日
答:8月24日他们又再次相遇。
【知识点】最小公倍数的应用;年、月、日时间的推算
【解析】【分析】6和8的最小公倍数就是他们再次相见隔的时间,据此解答。
20.(2020五下·海安期末)有三张正方形纸,边长分别是6分米、18分米和24分米。如果想裁剪成长4分米、宽3分米的长方形小纸片,且没有剩余。选择裁剪哪张正方形纸比较合适,能够裁剪成多少张小长方形纸片?
【答案】解:4和3的倍数有12、24、......;
所以选择裁剪边长是24分米的正方形纸比较合适,
能够裁剪成的张数:
(24÷4)×(24÷3)
=6×8
=48(张)
答:选择裁剪边长是24分米的正方形纸比较合适,能够裁剪成48张小长方形纸片。
【知识点】公倍数与最小公倍数
【解析】【分析】正方形的边长如果是4和3的倍数,这样裁剪起来没有剩余,比较合适;
(正方形的边长÷4分米)×(正方形的边长÷3分米)=可以裁剪的个数。
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1