首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
选修1-2
第三章 数系的扩充与复数的引入
本章复习与测试
2014《成才之路》高二数学(人教A版)选修1-2能力拓展提升:第三章 数系的扩充与复数的引入(2份)
文档属性
名称
2014《成才之路》高二数学(人教A版)选修1-2能力拓展提升:第三章 数系的扩充与复数的引入(2份)
格式
zip
文件大小
26.0KB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2014-04-01 19:40:15
点击下载
文档简介
能力拓展提升
一、选择题
11.已知复数z=(x-1)+(2x-1)i的模小于,则实数x的取值范围是( )
A.-
C.x>- D.x<-或x>2
[答案] A
[解析] 由条件知,(x-1)2+(2x-1)2<10,
∴5x2-6x-8<0,∴-
12.若a、b∈R,则复数(a2+6a+10)+(-b2-4b-5)i对应的点在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
[答案] D
[解析] a2+6a+10=(a+3)2+1>0,
-b2-4b-5=-(b+2)2-1<0.
13.复数1+cosα+isinα(π<α<2π)的模为( )
A.2cos B.-2cos
C.2sin D.-2sin
[答案] B
[解析] 所求复数的模为
==,
∵π<α<2π,∴<<π,
∴cos<0,
∴=-2cos.
14.已知0
A.(1,5) B.(1,3)
C.(1,) D.(1,)
[答案] C
[解析] 由已知,得|z|=.
由0
∴1
∴|z|=∈(1,).
故选C.
二、填空题
15.已知复数z1=-1+2i、z2=1-i、z3=3-2i,它们所对应的点分别是A、B、C,若O=x O+y O(x、y∈R),则x+y的值是______.
[答案] 5
[解析] 由复数的几何意义可知,
O=x+y,即
3-2i=x(-1+2i)+y(1-i),
∴3-2i=(y-x)+(2x-y)i.
由复数相等可得
,解得.
∴x+y=5.
16.设(1+i)sinθ-(1+icosθ)对应的点在直线x+y+1=0上,则tanθ的值为________.
[答案]
[解析] 由题意,得sinθ-1+sinθ-cosθ+1=0,
∴tanθ=.
三、解答题
17.实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i是:
(1)对应点在x轴上方;
(2)对应点在直线x+y+5=0上.
[解析] (1)由m2-2m-15>0,得知m<-3或m>5时,z的对应点在x轴上方.
(2)由(m2+5m+6)+(m2-2m-15)+5=0,得知:
m=或m=,
z的对应点在直线x+y+5=0上.
18.设z∈C,则满足条件|z|=|3+4i|的复数z在复平面上对应的点Z的集合是什么图形?
[解析] 解法一:|z|=|3+4i|得|z|=5.
这表明向量的长度等于5,即点Z到原点的距离等于5.
因此,满足条件的点Z的集合是以原点O为原点,以5为半径的圆.
解法二:设z=x+yi(x、y∈R),则|z|2=x2+y2.
∵|3+4i|=5,
∴由|z|=|3+4i|得x2+y2=25,
∴点Z的集合是以原点为圆心,以5为半径的圆.
能力拓展提升
一、选择题
11.(2012~2013学年度河北磁县一中高二期中测试)i是虚数单位,i(-i)在复平面内对应的点位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
[答案] A
[解析] i(-i)=1+i,故选A.
12.(2013·广东文)若i(x+yi)=3+4i,x、y∈R,则复数x+yi的模是( )
A.2 B.3
C.4 D.5
[答案] D
[解析] 本题考查复数相等,复数的模等概念.由xi+yi2=3+4i,知x=4,y=-3,则x+yi的模为=5.
13.(2012~2013学年度天津和平区高二期中测试)设z=1+i(i上虚数单位),则+z2等于( )
A.-1+i B.-1-i
C.1+i D.1-i
[答案] C
[解析] +z2=+(1+i)2=1-i+2i=1+i.
14.设复数z满足=i,则|1+z|=( )
A.0 B.1
C. D.2
[答案] C
[解析] ∵=i,
∴z=,∴z+1=+1==1-i,
∴|z+1|=.
二、填空题
15.(2012·湖北文,12)若=a+bi(a,b为实数,i为虚数单位),则a+b=________.
[答案] 3
[解析] 本题主要考查了复数的运算和复数的相等的条件.
==+i=a+bi,
即,解得a=0,b=3.∴a+b=3.
16.若复数z满足z+i=,则|z|=________.
[答案]
[解析] ∵z=-i=-3i+1-i=1-4i,
∴|z|=.
三、解答题
17.计算:1+i+i2+i3+…+i2 014.
[解析] 1+i+i2+i3+…+i2014
==
===
==i.
18.(2012~2013学年度重庆南开中学高二期中测试)已知=1-ni,(m、n∈R,i是虚数单位),求m、n的值.
[解析] ∵=1-ni,
∴=1-ni,
∴m-mi=2-2ni,
∴,∴.
点击下载
同课章节目录
第一章 统计案例
1.1回归分析的基本思想及其初步应用
1.2独立性检验的基本思想及其初步应用
实习作业
第二章 推理与证明
2.1合情推理与演绎推理
2.2直接证明与间接证明
第三章 数系的扩充与复数的引入
3.1数系的扩充和复数的概念
3.2复数代数形式的四则运算
第四章 框图
4.1流程图
4.2结构图
点击下载
VIP下载