第22课时 平行线的特征
[教学目标]:
1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些问题。
[教学重点]平行线的特征的探索。
[教学难点]运用平行线的特征进行有条理的分析、表达。
[设计理念]为学生提供充足的探索与交流的时间和空间,重视学生在实际操作以及在操作过程中的思考,使学生的空间观念、推理能力得到培养。
[教学方法] 目标教学法
[教学过程]
一、课前测评
平行线的判定方法。
二、学习目标展示(见课件)
三、目标导学
实验验证,探索特征。
1、学生实验(发印好平行线的纸单)
(1)已知,a//b,任意画一条直线c与平行线a、b相交。
(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系
(要求学生多画几条截线试试,鼓励学生用多种方法进行探索)
2、实验结论:两条平行线被第三条直线所截,同位角相等。
简记为“两直线平行,同位角相等”
(识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?)
3、问题讨论:
我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢
如图,已知直线a//b,思考∠1与∠2、 ∠2与∠3之间有什么关系?为什么?
(小组讨论,给予充足的时间交流,可引导学生
与同位角进行比较,从而得出结论,关注学生在
此能否积极地、有条理地思考)
结论: “两直线平行,内错角相等”
“两直线平行,同旁内角互补”
(识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同。)
4、归纳平行线的三个性质及三个判定
三个性质:
三个判定:
四、达标练习:
找找看:
如图所示,AB∥CD,AC∥BD,分别找出与∠1相等或互补的角。
(学生可通过讨论交流找到所有的答案,并标注在图中)
做一做:
如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时
∠1=∠2 , ∠3=∠4,
(1)∠1、∠3的大小有什么关系?∠2与∠4呢?
(2)反射光线BC与EF也平行吗?
先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由。
(1) AB∥CD → ∠1=∠3 → ∠2=∠4
(2) ∠2=∠4 → BC∥EF
五、达标检测
填空:
已知:如图,∠ADE=60°,∠B=60°,∠C=80°。
问∠ AED等于多少度?为什么
∵ ∠ADE=∠B=60° (已知)
∴ DE//BC( )
∴ ∠AED=∠C=80° ( )
(通过填空题,检验学生对平行线的判定与性质的区分)
六、课堂小结:
1、说说平行线的三个性质是什么?
2、平行线的性质与平行线的判定的区别:
判定:角的关系 平行关系
性质:平行关系 角的关系
3、证平行,用判定;知平行,用性质。
七、课后作业:
教材62页1、2、3题
八、课后反思:平行线的