【模块二 方程与不等式】专题2 分式方程-2023年中考数学第一轮复习(含解析)

文档属性

名称 【模块二 方程与不等式】专题2 分式方程-2023年中考数学第一轮复习(含解析)
格式 docx
文件大小 657.8KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2023-03-01 14:34:19

图片预览

文档简介

2023年中考数学第一轮复习
模块二 方程与不等式
专题2 分式方程
分 式 方 程 定义 分母中含有未知数的方程叫做分式方程
解法 (1)解分式方程的基本思路:将分式方程化为整式方程. (2)常用方法:①去分母;②换元法. (3)去分母法的步骤:①去分母,将分式方程转化为整式方程;②解所得的整式方程;③验根作答. (4)换元法的步骤:①设辅助未知数;②得到关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代回原式中,求出原来未知数的值;④检验作答. (5)解分式方程时,在把分式方程转化为整式方程时,有时可能产生不适合原方程的根(我们把这个根叫做方程的增根),所以解分式方程时要验根.
运用 解分式方程应用题的关键是把握题意,找准等量关系,列出分式方程,最后要验根
分式方程无解 (1)分式方程化为整式方程后所得整式方程无解,则原程无解; (2)整式方程有解,但所求得的解经检验是增根,此时分式无解。
题型一、解分式方程
1.(2022·江苏宿迁)解方程:.
2.(2022·辽宁营口)分式方程的解是( )
A. B. C. D.
3.(2022·四川成都)分式方程的解是_________.
4.(2022·黑龙江哈尔滨)方程的解为( )
A. B. C. D.
5.(2022·湖南常德)方程的解为________.
6.(2022·四川泸州)若方程的解使关于的不等式成立,则实数的取值范围是________.
7(2022·广西梧州)解方程:
8.(2022·广西玉林)解方程:.
题型二、分式方程的参数问题
1.(2022·四川遂宁)若关于x的方程无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
2.(2022 牡丹江)若关于x的方程=3无解,则m的值为(   )
A.1 B.1或3
C.1或2 D.2或3
7.(2022·黑龙江)已知关于x的分式方程的解是正数,则m的取值范围是( )
A. B. C.且 D.且
3.(2022·内蒙古通辽)若关于的分式方程:的解为正数,则的取值范围为( )
A. B.且 C. D.且
4.(2022·黑龙江齐齐哈尔)若关于x的分式方程的解大于1,则m的取值范围是______________.
题型三、分式方程的实际问题
1.(2022 朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60 km,一部分学生乘慢车先行,出发30 min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是(   )
A.-= B.-=
C.-=30 D.-=30
2.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为vkm/h,则符合题意的方程是( )
A. B. C. D.
3.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.
4.(2022·山东青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.
5.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
中小学教育资源及组卷应用平台
21世纪教育网(www.21cnjy.com)
6.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.
(1)求每件雨衣和每双雨鞋各多少元?
(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.
(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?
7.(2022·广西贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.
(1)绳子和实心球的单价各是多少元?
(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?
8.(2022·广西)金鷹酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:
(1)甲,乙两个工程队每天各安装多少台空调,才能同时完成任务?
(2)金鹰酒店响应“縁色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度:据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时,若电费0.8元/度,请你估计该酒店毎天所有客房空调所用电费 W(单位:元)的范围?
9.(2022·贵州遵义)遵义市开展信息技术与教学深度融合的精准化教学某实验学校计划购买,两种型号教学设备,已知型设备价格比型设备价格每台高20%,用30000元购买型设备的数量比用15000元购买型设备的数量多4台.
(1)求,型设备单价分别是多少元?
(2)该校计划购买两种设备共50台,要求型设备数量不少于型设备数量的.设购买台型设备,购买总费用为元,求与的函数关系式,并求出最少购买费用.
10.(2022·山东聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
(1)求实际施工时,每天改造管网的长度;
(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?
2023年中考数学第一轮复习
模块二 方程与不等式
专题2 分式方程
知识梳理
分 式 方 程 定义 分母中含有未知数的方程叫做分式方程
解法 (1)解分式方程的基本思路:将分式方程化为整式方程. (2)常用方法:①去分母;②换元法. (3)去分母法的步骤:①去分母,将分式方程转化为整式方程;②解所得的整式方程;③验根作答. (4)换元法的步骤:①设辅助未知数;②得到关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代回原式中,求出原来未知数的值;④检验作答. (5)解分式方程时,在把分式方程转化为整式方程时,有时可能产生不适合原方程的根(我们把这个根叫做方程的增根),所以解分式方程时要验根.
运用 解分式方程应用题的关键是把握题意,找准等量关系,列出分式方程,最后要验根
分式方程无解 (1)分式方程化为整式方程后所得整式方程无解,则原程无解; (2)整式方程有解,但所求得的解经检验是增根,此时分式无解。
题型梳理
题型一、解分式方程
1.(2022·江苏宿迁)解方程:.
【答案】x=﹣1
【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可.
【详解】解:,
2x=x﹣2+1,
x=﹣1,
经检验x=﹣1是原方程的解,
则原方程的解是x=﹣1.
【点睛】本题考查解分式方程,得出方程的解之后一定要验根.
2.(2022·辽宁营口)分式方程的解是( )
A. B. C. D.
【答案】C
【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可.
【详解】解:,
去分母,得,
去括号,得,
移项,得,
所以.
经检验,是原方程的解.
故选:C.
【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.
3.(2022·四川成都)分式方程的解是_________.
【答案】
【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x的系数化为1,求出x的值,将求出的x的值代入最简公分母中进行检验,即可得到原分式方程的解.
【详解】解:
解:化为整式方程为:3﹣x﹣1=x﹣4,
解得:x=3,
经检验x=3是原方程的解,
故答案为:.
【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.
4.(2022·黑龙江哈尔滨)方程的解为( )
A. B. C. D.
【答案】C
【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】解:
去分母得:,
去括号得:,
移项、合并同类项得:,
解得:x=9,
经检验:x=9是原分式方程的解,
故选:C.
【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.
5.(2022·湖南常德)方程的解为________.
【答案】
【分析】根据方程两边同时乘以,化为整式方程,进而进行计算即可求解,最后注意检验.
【详解】解:方程两边同时乘以,
解得
经检验,是原方程的解
故答案为:
【点睛】本题考查了解分式方程,解分式方程一定要注意检验.
6.(2022·四川泸州)若方程的解使关于的不等式成立,则实数的取值范围是________.
【答案】
【分析】先解分式方程得,再把代入不等式计算即可.
【详解】
去分母得:解得:
经检验,是分式方程的解
把代入不等式得:
解得故答案为:
【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.
7(2022·广西梧州)解方程:
【答案】
【分析】先方程两边同时乘以,化成整式方程求解,然后再检验分母是否为0即可.
【详解】解:方程两边同时乘以得到:,
解出:,
当时分式方程的分母不为0,
∴分式方程的解为:.
【点睛】本题考查了分式方程的解法,属于基础题,计算过程中细心即可.
8.(2022·广西玉林)解方程:.
【答案】
【分析】两边同时乘以公分母,先去分母化为整式方程,计算出x,然后检验分母不为0,即可求解.
【详解】,

解得,
经检验是原方程的解,
故原方程的解为:
题型二、分式方程的参数问题
1.(2022·四川遂宁)若关于x的方程无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
【答案】D
【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当时,当时,或,进行计算即可.
【详解】方程两边同乘,得,整理得,
原方程无解,当时,;
当时,或,此时,,解得或,
当时,无解;
当时,,解得;
综上,m的值为0或4;故选:D.
2.(2022 牡丹江)若关于x的方程=3无解,则m的值为(   )
A.1 B.1或3
C.1或2 D.2或3
7.(2022·黑龙江)已知关于x的分式方程的解是正数,则m的取值范围是( )
A. B. C.且 D.且
【答案】C
【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到且,即可求解.
【详解】方程两边同时乘以,得,
解得,
关于x的分式方程的解是正数,
,且,
即且,
且,故选:C.
【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键.
3.(2022·内蒙古通辽)若关于的分式方程:的解为正数,则的取值范围为( )
A. B.且 C. D.且
【答案】B
【分析】先解方程,含有k的代数式表示x,在根据x的取值范围确定k的取值范围.
【详解】解:∵,
∴,
解得:,
∵解为正数,
∴,
∴,
∵分母不能为0,
∴,
∴,解得,
综上所述:且,故选:B.
【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.
4.(2022·黑龙江齐齐哈尔)若关于x的分式方程的解大于1,则m的取值范围是______________.
【答案】m >0且m≠1
【分析】先解分式方程得到解为,根据解大于1得到关于m的不等式再求出m的取值范围,然后再验算分母不为0即可.
【详解】解:方程两边同时乘以得到:,
整理得到:,
∵分式方程的解大于1,
∴,解得:,
又分式方程的分母不为0,
∴且,解得:且,
∴m的取值范围是m >0且m≠1.
【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件.
题型三、分式方程的实际问题
1.(2022 朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60 km,一部分学生乘慢车先行,出发30 min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是(   )
A.-= B.-=
C.-=30 D.-=30
2.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为vkm/h,则符合题意的方程是( )
A. B. C. D.
【答案】A
【分析】先分别根据“顺流速度静水速度江水速度”、“逆流速度静水速度江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行与逆流航行所用时间相等”建立方程即可得.
【详解】解:由题意得:轮船的顺流速度为,逆流速度为,
则可列方程为,
故选:A.
3.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.
【答案】
【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.
【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得.
故答案为:.
4.(2022·山东青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.
【答案】
【分析】根据比赛时小亮的平均速度比训练前提高了25%,可得比赛时小亮平均速度为(1+25%)x米/分,根据比赛时所用时间比训练前少用3分钟列出方程.
【详解】解:∵比赛时小亮的平均速度比训练前提高了25%,小亮训练前的平均速度为x米/分,
∴比赛时小亮平均速度为(1+25%)x米/分,
根据题意可得,
故答案为:.
5.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
【答案】张老师骑车的速度为千米/小时
【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.
【详解】解:设张老师骑车的速度为千米/小时,则汽车速度是千米/小时,
根据题意得:,解之得,
经检验是分式方程的解,
答:张老师骑车的速度为千米/小时.
6.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.
(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?
【答案】(1)每件雨衣元,每双雨鞋元
(2)(3)最多可购买套
【分析】(1)根据题意,设每件雨衣元,每双雨鞋元,列分式方程求解即可;
(2)根据题意,按套装降价20%后得到每套元,根据费用=单价×套数即可得出结论;
(3)根据题意,结合(2)中所求,得出不等式,求解后根据实际意义取值即可.
(1)解:设每件雨衣元,每双雨鞋元,则
,解得,
经检验,是原分式方程的根,,
答:每件雨衣元,每双雨鞋元;
(2)解:根据题意,一套原价为元,下降20%后的现价为元,则

(3)解:,购买的套数在范围内,
即,解得,
答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买套.
7.(2022·广西贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?
【答案】(1)绳子的单价为7元,实心球的单价为30元
(2)购买绳子的数量为30条,购买实心球的数量为10个
【分析】(1)设绳子的单价为x元,则实心球的单价为元,根据“84元购买绳子的数量与360元购买实心球的数量相同”列出分式方程,解分式方程即可解题;
(2)根据“总费用为510元,且购买绳子的数量是实心球数量的3倍”列出一元一次方程即可解题.
(1)
解:设绳子的单价为x元,则实心球的单价为元,
根据题意,得:,
解分式方程,得:,
经检验可知是所列方程的解,且满足实际意义,
∴,
答:绳子的单价为7元,实心球的单价为30元.
(2)设购买实心球的数量为m个,则购买绳子的数量为条,
根据题意,得:,
解得

答:购买绳子的数量为30条,购买实心球的数量为10个.
8.(2022·广西)金鷹酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:
(1)甲,乙两个工程队每天各安装多少台空调,才能同时完成任务?
(2)金鹰酒店响应“縁色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度:据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时,若电费0.8元/度,请你估计该酒店毎天所有客房空调所用电费 W(单位:元)的范围?
【答案】(1)甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务
(2)
【分析】(1)设乙工程队每天安装台空调,则甲工程队每天安装台空调,根据甲队的安装任务除以甲队的速度等于乙队的安装任务除以乙队的速度,可列分式方程,求解并检验即可;
(2)设每天有间客房有旅客住宿,先根据题意表示出W,再根据,即可确定W的范围.
(1)
解:设乙工程队每天安装台空调,则甲工程队每天安装台空调,
由题意得,
解得,
经检验,是所列方程的解,且符合题意,
(台),
所以,甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务;
(2)
解:设每天有间客房有旅客住宿,
由题意得,

随的增大而增大,

当时,;当时,;

9.(2022·贵州遵义)遵义市开展信息技术与教学深度融合的精准化教学某实验学校计划购买,两种型号教学设备,已知型设备价格比型设备价格每台高20%,用30000元购买型设备的数量比用15000元购买型设备的数量多4台.
(1)求,型设备单价分别是多少元?
(2)该校计划购买两种设备共50台,要求型设备数量不少于型设备数量的.设购买台型设备,购买总费用为元,求与的函数关系式,并求出最少购买费用.
【答案】(1),型设备单价分别是元.
(2),最少购买费用为元
【分析】(1)设型设备的单价为元,则型设备的单价为元,根据题意建立分式方程,解方程即可求解;
(2)设型设备的单价为元,则型设备的单价为元,根据题意建立一元一次不等式,求得的最小整数解,根据单价乘以数量即可求的与的函数关系式,根据一次函数的性质即可求得最少购买费用.
(1)
解:设型设备的单价为元,则型设备的单价为元,根据题意得,

解得,
经检验是原方程的解,
型设备的单价为元;
答:,型设备单价分别是元.
(2)
设购买台型设备,则购买型设备台,依题意,

解得,
的最小整数解为,
购买总费用为元,,

,随的增大而增大,
时,取得最小值,最小值为.
答:最少购买费用为元.
10.(2022·山东聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
(1)求实际施工时,每天改造管网的长度;
(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?
【答案】(1)实际施工时,每天改造管网的长度是72米
(2)以后每天改造管网至少还要增加36米
【分析】(1)根据每天的施工效率比原计划提高了20%,设未知数,再根据比原计划提前10天完成任务列出方程即可求解;
(2)根据工期不超过40天列出不等式即可求解.
【详解】解:(1)设原计划每天改造管网米,则实际施工时每天改造管网米,
由题意得:,
解得:,
经检验,是原方程的解,且符合题意.
此时,60×(1+20%)=72(米).
答:实际施工时,每天改造管网的长度是72米;
(2)设以后每天改造管网还要增加米,
由题意得:,
解得:.
答:以后每天改造管网至少还要增加36米.
同课章节目录