17.1勾股定理同步练习(无答案)2022-2023学年八年级数学下册人教版

文档属性

名称 17.1勾股定理同步练习(无答案)2022-2023学年八年级数学下册人教版
格式 docx
文件大小 477.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-03-01 17:49:26

图片预览

文档简介

17.1 勾股定理
一、单选题
1.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是(  )
A.148 B.100 C.196 D.144
2.已知点M的坐标为,则下列说法正确的是(   )
A.点M在第二象限内 B.点M到x轴的距离为3
C.点M关于y轴对称的点的坐标为 D.点M到原点的距离为5
3.的半径为,弦.若,则和的距离为( )
A. B. C.或 D.或
4.如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿竖直插到水底,此时竹竿离岸边点C处的距离米.竹竿高出水面的部分长0.2米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度为(  )
A.1.5米 B.1.7米 C.1.8米 D.0.6米
5.已知,斜坡的坡度i=1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是( )
A.米 B.20米 C.米 D.米
6.如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x轴负半轴于点C,则点C的坐标为( )
A.(﹣1,0) B.(2,0) C.(3,0) D.(3,0)
7.如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为的半圆,其边缘.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )m.(取3)
A.30 B.28 C.25 D.22
8.如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且,.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是( )cm.
A.14 B.12 C.10 D.8
9.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P表示的数是( )
A. B. C. D.
10.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是( )
A. B.
C. D.
11.如图,△ABC和△ECD都是等腰直角三角形,△ABC的顶点A在△ECD的斜边DE上.下列结论:其中正确的有( )
①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=AD;④AE+AD=2AC
A.1个 B.2个 C.3个 D.4个
12.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则的值为( )
A.13 B.12 C.11 D.10
二、填空题
13.如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.
14.我国古代有这样一道数学问题:“枯木一根直立地上,高三丈,周八尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为3丈,底面周长为8尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是___________丈.
15.风景秀丽的永嘉境内分布着许多国家级旅游景点,北斗卫星拍摄到永嘉小若岩风景区与埭头古村以及两条相互垂直的乡间公路的位置如图所示,A点的坐标为,B点的坐标为.现要在两条乡间公路上各建一个便民服务点C,D,形成一条便民服务通道.试求四边形ABCD的最小周长______.
16.如图,Rt△ABC≌Rt△FDE,∠ABC=∠FDE=90°,∠BAC=30°,AC=4,将Rt△FDE沿直线l向右平移,连接BD、BE,则BD+BE的最小值为___.
17.如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=__________.
三、解答题
18.长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.
(1)求风筝的垂直高度CE;
(2)如果小明想风筝沿CD方向下降12米,则他应该往回收线多少米?
19.小明将一副三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.若已知CD=,求AB的长.
20.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?
21.如图所示,在甲村至乙村的公路旁有一块山地正在开发,现需要在处进行爆破,已知点与公路上的停靠站的距离为300米,与公路上的另一停靠站的距离为400米,且.为了安全起见,爆破点周围半径250米范围内不得进入,在进行爆破时,公路是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.
22.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.
(1)求∠BAC的度数.
(2)若AC=2,求AD的长.
23.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到(即),消防车高,救人时云梯伸长至最长,在完成从(即)高的处救人后,还要从(即)高的处救人,这时消防车从处向着火的楼房靠近的距离为多少米?(延长交于点,,点在上,的长即为消防车的高)