25.2概率的简单应用课后练习
班级:________ 姓名:________
一、单选题(共 10 小题)
1、取一根长为米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于米的概率是( )
A. B. C. D.
2、在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图(1)所示摆放,朝上的点数是2,最后翻动到如图(2)所示位置.现要求翻动次数最少,则最后骰子朝上的点数为2的概率为( )
A. B. C. D.
3、在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,则摸出红球的概率是( )
A. B. C. D.
4、写有“盖尾”“武夷山”“三明”“赖店”的四张卡片,从中随机抽取一张,抽到卡片所对应的地区属于莆田市的概率是( )
A.1 B. C. D.
5、有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是( )
A. B. C. D.
6、如图所示,随机闭合开关K1,K2,K3中的两个,则能让两盏灯同时发光的概率为( )
A.1 B. C. D.0
7、6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、等腰梯形、平行四边形、五角星、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )
A. B. C. D.
8、如图,由于各人的习惯不同,双手交叉时左手大拇指或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如下表所示:
2011届 2012届 2013届 2014届 2015届
参与实验的人数 106 110 98 104 112
右手大拇指在上的人数 54 57 49 51 56
频率 0.509 0.518 0.500 0.490 0.500
根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为( )
A.0.6 B.0.5 C.0.45 D.0.4
9、随机抽取某城市30天的空气质量状况如下表,当污染指数≤100时为良,请根据以下记录估计该城市一年(以365天计)中,空气质量达到良以上的天数为 ( )
A.216天 B.217天 C.218天 D.219天
10、掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 ( )
A. B. C. D.
二、填空题(共 10 小题)
1、抛掷两枚普通的正方体骰子,把两枚骰子的点数相加,若第一枚骰子的点数为1,第二枚骰子的点数为5,则是“和为6”的一种情况,我们按顺序记作(1,5),如果一个游戏规定掷出“和为6”时甲方赢,掷出“和为9”时乙方赢,则这个游戏 ________(填“公平”、“不公平”).
2、在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球实验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中白色球可能有_____个.
3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率_____.
4、一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中.
(1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是_____.
(2)若乙盒中最终有5个红球,则袋中原来最少有______个球.
5、对某名牌衬衫抽检的结果如下表:
抽检件数
不合格件数
如果销售 件该名牌衬衫,那么至少要多准备________件合格品,以便供顾客更换.
6、若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是________
7、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个.摸出一个球记下颜色后放回,再摸出一个球,则两次都摸到红球的概率是_____.
8、从这七个数中,随机取出一个数,记为,那么使关于的方程有整数解,且使关于的不等式组 有解的概率为 .
9、已知一个口袋中装有六个完全相同的小球,小球上分别标有﹣3,﹣2,﹣1,0,1,2六个数,搅均后一次从中摸出一个小球,将小球上的数用a表示,则摸出小球上的a值恰好使函数y=ax的图象经过二、四象限,且使方程,有实数解的概率是_____.
10、经过调查分析,七年级(1)班学生半年阅读课外书为2本、3本、4本的人数恰好各占三分之一,七年级(2)班学生半年阅读课外书为3本、4本、5本、6本的人数恰好各点四分之一,从七年级(1)班和(2)班各随机抽取一名同学,他们读书量刚好相同的概率是_____.
三、解答题(共 6 小题)
1、某著名景区计划在西峰修建安装至多4条索道接送游客,过去10年景区游客统计资料显示,景区每年游客客流量都在160万人以上.过去10年的游客客流量的统计情况绘制成如下频数分布直方图(数据包括左端点,不含右端点,假设每年游客客流量不相互影响).
以过去10年的游客客流量的统计情况为参考依据.
(1)求该景区今年游客客流量不低于240万人的概率;
(2)若该景区希望安装的索道尽可能运行,但每年索道最多可运行条数受游客客流量的限制,并有如下表关系:
年游客客流量(单位:万人)
索道最多可运行条数 1 2 3 4
若某条索道运行,则该条索道年利润为6000万元;若某条索道未运行,则该条索道年亏损2000万元,从平均获利的角度看,帮景区作出决策,应选择安装2条还是3条索道获利较多?请说明理由.
2、某商场为了吸引顾客,设立了一可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费100元(含100元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠.
(1)某顾客正好消费99元,是否可以获得相应的优惠.
(2)某顾客正好消费120元,他转一次转盘获得三种打折优惠的概率分别是多少?
3、暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每 200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.
(1)求他此时获得购物券的概率是多少?
(2)他获得哪种购物券的概率最大?请说明理由.
4、如图,一转盘被等分成四个扇形,上面分别标有1、2、3、4,指针的位置固定不动,自由转动转盘,停止后,记下指针所指扇形上的数(若指针正好停在等分线上,属右边区域)下表是嘉琪转动转盘6次后记录的数据:
次数 1 2 3 4 5 6
数字 3 2 3 4 1 4
(1)求转动转盘6次后记录的数据的众数;
(2)求第7次转动转盘后记录的数字是4的概率;
(3)嘉琪打算继续转动转盘两次,判断是否可能发生这8次记录的数字的平均数不小于3的情况,若有可能,请求出发生此情况的概率,若不可能,请说明理由.
5、某商场在世界杯足球比赛期间举行促销活动,并设计了两种方案:一种是以商品价格的九五折优惠的方式进行销售;一种是采用有奖销售的方式,具体措施是:①有奖销售自2009年6月9日起,发行奖券10000张,发完为止;②顾客累计购物满400元,赠送奖券一张(假设每位顾客购物每次都恰好凑足400元);③世界杯后,顾客持奖券参加抽奖;④奖项是:特等奖2名,各奖3000元奖品;一等奖10名,各奖1000元奖品;二等奖20名,各奖300元奖品;三等奖100名,各奖100元奖品;四等奖200名,各奖50元奖品;纪念奖5000名,各奖10元奖品,试就商场的收益而言,对两种促销方法进行评价,选用哪一种更为合算?
6、下图是甲、乙两个可以自由旋转的转盘,转盘被等分成若干个扇形,并将其涂成红、白两种颜色,转动转盘,分别计算指针指向红色区域的机会,若要使它们的机会相等,则应如何改变涂色方案