第四章 三角形专项训练题(含答案)

文档属性

名称 第四章 三角形专项训练题(含答案)
格式 docx
文件大小 962.9KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2023-03-02 19:56:59

图片预览

文档简介

七年级数学下册三角形
一、单选题
1.下列长度的三条线段能首尾相接构成三角形的是( )
A.,, B.,,
C.,, D.,,
2.下列说法正确的是( )
A.两个面积相等的图形一定是全等图形 B.两个全等图形形状一定相同
C.两个周长相等的图形一定是全等图形 D.两个正三角形一定是全等图形
3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )
A. B.
C. D.
4.已知图中的两个三角形全等,则∠等于( )
A. B. C. D.
5.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线.这里构造全等三角形的依据是( )
A. B. C. D.
6.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是( )
A.①或② B.②或③ C.①或③ D.①或④
7.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于(  ).
A.150° B.180° C.210° D.225°
8.如图,C为线段AE上一动点(不与点,重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是( )
A.∠AOB=60° B.AP=BQ
C.PQ∥AE D.DE=DP
二、填空题
9.三角形三边长分别为3,,则a的取值范围是______.
10.如图所示,AD是△ABC的中线.若AB=7cm,AC=5cm,则△ABD和△ADC的周长的差为____cm.
11.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.
12.如图,,,要使,应添加的条件是_________.(只需写出一个条件即可)
13.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且,则阴影部分的面积为____.
14.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.则DE=________.
15.如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______.
16.已知a,b,c是的三边长,则______.
三、解答题
17.在中,,边上的中线把三角形的周长分为10和18两部分,求腰长.
18.如图,A,B,C,D依次在同一条直线上,,BF与EC相交于点M.求证:.
19.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.
20.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.
21.如图,和中,,,且点C在上,与交于点P.
(1)求证:;
(2)若平分,求证:.
22.如图,点E、F在线段BC上,,,,证明:.
23.如图,在中,D是边上的点,,垂足分别为E,F,且.求证:.
24.已知:如图,.求证:.
25.已知a,b,c是一个三角形的三边长,化简|2a+b﹣c|﹣|b﹣2a﹣c|+|﹣a﹣b﹣2c|.
26.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,CE交BA于点D,CE交BF于点M.
求证:(1)EC=BF;
(2)EC⊥BF.
27.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BDC的度数.
28.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求证:△BCE≌△DCF;
(2)求证:AB+AD=2AE.
29.如图,∠BAC=90°,AB=AC,BE⊥AD于点E,CF⊥AD于点F.
(1)求证:△ABE≌△CAF;
(2)若CF=5,BE=2,求EF的长.
30.如图,已知在四边形ABCD中,BD是的平分线,.2 求证:.
31.如图所示,已知AE⊥AB,△ACE≌△AFB,CE、AB、BF分别交于点D、M.证明:CE⊥BF.
32.王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合.
(1)求证:;
(2)求两堵木墙之间的距离.
33.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.
(1)求证:AE=CD;
(2)证明:∠1=∠3.
34.已知是的三边长.
(1)若满足,,试判断的形状;
(2)化简:
35.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,
(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.
36.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点,如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t<3).
(1)用含t的代数式表示PC的长度.
(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?
37.如图(1),AB=4cm,AC⊥AB于A,BD⊥AB于B,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为(s).
(1)若点Q的运动速度与点P的运动速度相等,当=1时,△ACP△BPQ是否全等?PC与PQ是否垂直?请分别说明理由;
(2)如图(2),将图(1)中的“AC⊥AB于A,BD⊥AB于B”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为cm/s,是否存在实数,使得△ACP与△BPQ全等?若存在,求出相应的、的值;若不存在,请说明理由.
38.如图1,在中,,,直线经过点,且于点,于点.易得(不需要证明).
(1)当直线绕点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时之间的数量关系,并说明理由;
(2)当直线绕点旋转到图3的位置时,其余条件不变,请直接写出此时之间的数量关系(不需要证明).
中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
参考答案:
1.B
【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】解:根据三角形的三边关系,知
A、1+2=3,不能组成三角形,故选项错误,不符合题意;
B、3+4>5,能够组成三角形,故选项正确,符合题意;
C、5+4<10,不能组成三角形,故选项错误,不符合题意;
D、2+6<9,不能组成三角形,故选项错误,不符合题意;
故选:B.
【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.
2.B
【分析】根据全等图形的定义进行判断即可.
【详解】解:A:两个面积相等的图形不一定是全等图形,故A错误,不符合题意;
B:两个全等图形形状一定相同,故B正确,符合题意;
C:两个周长相等的图形不一定是全等图形,故C错误,不符合题意;
D:两个正三角形不一定是全等图形,故D错误,不符合题意;
故选:B.
【点睛】本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.
3.A
【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.
【详解】根据定义可得A选项是作BC边上的高,符合题意,
B选项作的不是三角形ABC的高,不符合题意,
C选项是作AB边上的高,不符合题意,
D选项是作AC边上的高,不符合题意.
故选:A.
【点睛】本题考查三角形高线的作法,熟练掌握定义是解题关键.
4.D
【分析】根据全等三角形的性质:全等三角形对应角相等,即可得到结论.
【详解】 图中的两个三角形全等, 为 和 的夹角
又第一个三角形中 和 的夹角为
故选:D.
【点睛】本题考查了全等三角形的性质,准确找到对应角是解题的关键.
5.D
【分析】根据全等三角形的判定条件判断即可.
【详解】解:由题意可知
在中
∴(SSS)

∴就是的平分线
故选:D
【点睛】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.
6.A
【分析】根据全等三角形的SSS判定条件解答即可.
【详解】解:∵AE=FB,
∴AE+BE=FB+BE,
∴AB=FE,
在△ABC和△FED中,

∴△ABC≌△FED(SSS),
∵AE=BE和BF=BE推不出AB=FE,
∴可利用的是①或②,
故选:A.
【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定方法是解答的关键.
7.B
【分析】根据SAS可证得≌,可得出,继而可得出答案,再根据邻补角的定义求解.
【详解】解:由题意得:,,,
≌,


故选B.
【点睛】本题考查全等图形的知识,比较简单,解答本题的关键是判断出≌..
8.D
【分析】利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正确;根据△CQB≌△CPA(ASA),得出B正确;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,得出C正确;根据∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D错误.
【详解】解:∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
在△ACD与△BCE中,

∴△ACD≌△BCE(SAS),
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
在△CQB与△CPA中,

∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,
故C正确,
∵△CQB≌△CPA,
∴AP=BQ,
故B正确,
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故D错误;
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∵等边△DCE,
∠EDC=60°=∠BCD,
∴BC∥DE,
∴∠CBE=∠DEO,
∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,
故A正确.
故选:D.
【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量.
9.
【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.
【详解】三角形的三边长分别为3,,4,

即,
故答案为.
【点睛】本题考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系.
10.2
【分析】将△ABD和△ADC的周长表示出来,可以得到周长差即为AB﹣AC的差,算出即可.
【详解】解:∵AD是BC边上的中线,
∴BD=CD,
∴△ABD和△ACD的周长差为:
(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,
∵AB=7cm,AC=5cm,
∴△ABD和△ACD的周长差=7﹣5=2cm.
故答案为:2.
【点睛】本题考查了三角形中线的定义、三角形的周长,掌握三角形中线的定义是解题关键.三角形中线的定义:在三角形中,连接一个顶点和它所对的边的中点的线段叫做三角形的中线.
11.③
【分析】根据全等三角形的判定可即可求解.
【详解】解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA判定定理可得到一个全等三角形,进而可带③去,
故答案为:③.
【点睛】本题考查了全等三角形的条件,解题的关键是需要注意的是只靠一个角或两条边不能等得到全等.
12.或或(只需写出一个条件即可,正确即得分)
【分析】根据已知的∠1=∠2,可知∠BAC=∠EAD,两个三角形已经具备一边一角的条件,再根据全等三角形的判定方法,添加一边或一角的条件即可.
【详解】解:如图所所示,
∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD.
∴∠BAC=∠EAD.
(1)当∠B=∠E时,
(2)当∠C=∠D时,
(3)当AB=AE时,
故答案为:∠B=∠E或∠C=∠D或AB=AE
【点睛】本题考查的是全等三角形的判定方法,熟知全等三角形的各种判定方法及适用条件是解题的关键.
13.1
【分析】根据三角形中线把三角形分成两个面积相等的三角形得出,,进而求得,然后代入数据进行计算求解即可
【详解】解:∵点D、E分别是边BC、AD的中点
∴,


∵点F是CE的中点
故答案为:1
【点睛】本题考查了三角形中线的性质和三角形面积的应用,熟知三角形中线平分三角形面积是解题的关键.
14.1
【分析】先证明△ACD≌△CBE,再求出DE的长,解决问题.
【详解】解:∵BE⊥CE于E,AD⊥CE于D





∴,
∴.
故答案为:1
【点睛】此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键.
15.225°
【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.
【详解】解:如图所示:
在△ABC和△AEF中,
∴△ABC≌△AEF(SAS),
∴∠5=∠BCA,
∴∠1+∠5=∠1+∠BCA=90°,
在Rt△ABD和Rt△AEH中,
∴Rt△ABD≌Rt△AEH(HL),
∴∠4=∠BDA,
∴∠2+∠4=∠2+∠BDA=90°,
∵∠3=45°,
∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.
故答案为:225°.
【点睛】此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等即可求解.
16.
【分析】根据三角形三边关系定理,确定绝对值中式子的符号后化简即可.
【详解】∵a,b,c是的三边长,
∴a+c>b,b+c>a,

=
=,
故答案为:.
【点睛】本题考查了三角形三边关系定理,绝对值的化简,熟练掌握三角形三边关系定理是解题的关键.
17.12
【分析】由在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成10和18两部分,可得|AB-BC|=18-10=8,AB+BC+AC=2AB+BC=10+18=28,然后分别从AB>BC与AB<BC去分析求解即可求得答案.
【详解】解:如图,
∵AB=AC,BD是AC边上的中线,
即AD=CD,
∴|AB-BC|=18-10=8,AB+BC+AC=2AB+BC=10+18=28,
若AB>BC,则AB-BC=8,
又∵2AB+BC=28,
联立方程组:

解得:AB=12,BC=4,
12、12、4三边能够组成三角形;
若AB<BC,则BC-AB=8,
又2AB+BC=28,
联立方程组:

解得:AB=,BC=,
、、三边不能够组成三角形;
∴腰长AB为12.
【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形,这是解题的关键.
18.见解析
【分析】由AB=CD,得AC=BD,再利用SAS证明△AEC≌△DFB,即可得结论.
【详解】证明:,


在和中,


【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
19.证明见解析
【分析】利用角边角证明△CDE≌△ABC,即可证明DE=BC.
【详解】证明:∵DE∥AB,
∴∠EDC=∠B.
又∵CD=AB,∠DCE=∠A,
∴△CDE≌△ABC(ASA).
∴DE=BC.
【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.
20.(1)见解析;(2)见解析
【分析】(1)根据全等三角形的判定证明△ABD≌△ACE(SAS)即可;
(2)由△ABD≌△ACE证得∠B=∠C,进而证得△ACM≌△ABN(ASA),再根据全等三角形的性质可证得结论.
【详解】(1)证明:在△ABD和△ACE中,

∴△ABD≌△ACE(SAS),
∴BD=CE;
(2)证明:∵∠1=∠2,
∴∠1+∠DAE=∠2+∠DAE,
即∠BAN=∠CAM,
由(1)知:△ABD≌△ACE,
∴∠B=∠C,
在△ACM和△ABN中,

∴△ACM≌△ABN(ASA),
∴∠M=∠N.
【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答的关键.
21.(1)见详解
(2)见详解
【分析】(1)由,可得,再利用“”即可证明;
(2)在(1)中已有,有,,根据平分,可得,即可证明,问题得证.
【详解】(1)∵,
∴,
∴,
∵,,
∴;
(2)∵在(1)中已有,
∴,,
∵平分,
∴,
∵,
∴,
∵,,
∴,
∴.
【点睛】本题主要考查了全等三角形的判定与性质,掌握利用“”、“”证明三角形全等,是解答本题的关键.
22.见解析
【分析】利用AAS证明△ABE≌△DCF,即可得到结论.
【详解】证明:∵,
∴∠B=∠C,
∵,,
∴△ABE≌△DCF(AAS),
∴.
【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.
23.见解析
【分析】由得出,由SAS证明,得出对应角相等即可.
【详解】证明:∵,
∴.
在和中,
∴,
∴.
【点睛】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.
24.见解析
【分析】由∠3=∠4可得∠ACB=∠ACD,然后即可根据ASA证明△ACB≌△ACD,再根据全等三角形的性质即得结论.
【详解】解:∵,,,
∴,
∵ ,
∴△ACB≌△ACD,
∴.
【点睛】本题考查了全等三角形的判定和性质,证明△ACB≌△ACD是解本题的关键.
25.a+3b
【分析】根据三角形三边关系得到2a+b﹣c>0,b﹣2a﹣c<0,﹣a﹣b﹣2c<0,再去绝对值,合并同类项即可求解.
【详解】解:∵a,b,c 是三角形的三边,
∴由a+b﹣c>0得2a+b﹣c>0,
由b﹣(a+c)<0得b﹣2a﹣c<0,
由﹣a﹣b﹣c<0得﹣a﹣b﹣2c<0,
∴原式=(2a+b﹣c)+(b﹣2a﹣c)+(a+b+2c)
=a+3b.
【点睛】本题考查了三角形三边关系,绝对值的性质,整式的加减,关键是得到2a+b﹣c>0,b﹣2a﹣c<0,﹣a﹣b﹣2c<0.
26.(1)见解析;(2)见解析
【详解】(1)先利用SAS证明△ABF≌△AEC即可得到EC=BF;
(2)根据(1)中的全等推得∠AEC=∠ABF,根据∠BAE=90°,∠AEC+∠ADE=90°,再根据对顶角相等,等量代换后,推得∠BMD=90°.
【解答】证明:(1)∵AE⊥AB,AF⊥AC,
∴∠BAE=∠CAF=90°,
∴∠BAE+∠BAC=∠CAF+∠BAC,
∴∠EAC=∠BAF,
在△ABF和△AEC中,

∴△ABF≌△AEC(SAS),
∴EC=BF;
(2)如图,由(1)得:△ABF≌△AEC,
∴∠AEC=∠ABF,
∵AE⊥AB,
∴∠BAE=90°,
∴∠AEC+∠ADE=90°,
∴∠ADE=∠BDM(对顶角相等),
∴∠ABF+∠BDM=90°,
在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,
∴EC⊥BF.
【点睛】本题主要考查了全等三角形的性质与判定,对顶角的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
27.(1)证明见解析;(2)∠BDC=75°.
【分析】(1)由条件可利用SAS证得结论;
(2)由等腰直角三角形的性质可先求得∠BCA,利用三角形外角的性质可求得∠AEB,再利用全等三角形的性质可求得∠BDC.
【详解】解:(1)证明:
∵∠ABC=90°,
∴∠DBC=90°,
在△ABE和△CBD中

∴△ABE≌△CBD(SAS);
(2)∵AB=CB,∠ABC=90°,
∴∠BCA=45°,
∴∠AEB=∠CAE+∠BCA=30°+45°=75°,
∵△ABE≌△CBD,
∴∠BDC=∠AEB=75°.
【点睛】本题主要考查全等三角形的判定和性质,三角形外角的性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
28.详见解析
【分析】(1)由角平分线定义可证△BCE≌△DCF(HL);(2)先证Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.
【详解】(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,
∴CE=CF,∠F=∠CEB=90°,
在Rt△BCE和Rt△DCF中,
∴△BCE≌△DCF;
(2)解:∵CE⊥AB于E,CF⊥AD于F,
∴∠F=∠CEA=90°,
在Rt△FAC和Rt△EAC中,,
∴Rt△FAC≌Rt△EAC,
∴AF=AE,
∵△BCE≌△DCF,
∴BE=DF,
∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.
【点睛】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.
29.(1)见解析
(2)EF的长为3.
【分析】(1)由BE⊥AD于点E,CF⊥AD于点F得∠AEB=∠CFA=90°,而∠BAC=90°,根据同角的余角相等可证明∠B=∠FAC,还有AB=CA,即可证明△ABE≌△CAF;
(2)由△ABE≌△CAF,根据全等三角形的性质即可求解.
【详解】(1)证明:∵BE⊥AD于点E,CF⊥AD于点F,
∴∠AEB=∠CFA=90°,
∵∠BAC=90°,
∴∠B=∠FAC=90°-∠BAE,
在△ABE和△CAF中,

∴△ABE≌△CAF(AAS);
(2)解:∵△ABE≌△CAF,CF=5,BE=2,
∴AF=BE=2,AE= CF=5,
∴EF=AE-AF=5-2=3,
∴EF的长为3.
【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.
30.见解析
【分析】方法一,在BC上截取BE,使,连接DE,由角平分线的定义可得,根据全等三角形的判定可证和全等,再根据全等三角形的性质可得,,由AD=CD等量代换可得,继而可得,由于,可证;
方法2,延长BA到点E,使,由角平分线的定义可得,根据全等三角形的判定可证和全等,继而可得,.由,可得,继而求得,由,继而可得;
方法3, 作于点E,交BA的延长线于点F,由角平分线的定义可得,由,,可得,根据全等三角形的判定可证和全等,继而可得,再根据HL定理可得可证.
【详解】解:方法1 截长如图,在BC上截取BE,使,
连接DE,
因为BD是的平分线,
所以.
在和中,
因为
所以,
所以,.
因为,
所以,
所以.
因为,
所以.
方法2 补短
如图,延长BA到点E,使.
因为BD是的平分线,
所以
在和中,
因为,
所以,
所以,.
因为,
所以,
所以.
因为,
所以.
方法3 构造直角三角形全等
作于点E.交BA的延长线于点F
因为BD是的平分线,
所以.
因为,,
所以,
在和中,
因为,
所以,
所以.
在和中,
因为,
所以,
所以.
因为,
所以.
31.见解析.
【分析】先利用垂直定义得到∠BAE=90°,在利用三角形全等的性质得∠CAE=∠BAF,∠ACE=∠F,则∠CAF=∠BAE=90°,然后根据三角形内角和定理易得∠FMC=∠CAF=90°,然后根据垂直的定义即可得到结论.
【详解】证明:∵AE⊥AB,
∴∠BAE=90°,
∵△ACE≌△AFB,
∴∠CAE=∠BAF,∠ACE=∠F,
∴∠CAB+∠BAE=∠BAC+∠CAF,
∴∠CAF=∠BAE=90°,
而∠ACE=∠F,
∴∠FMC=∠CAF=90°,
∴CE⊥BF.
【点睛】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.
32.(1)证明见解析;(2)两堵木墙之间的距离为.
【分析】(1)根据同角的余角相等可证,然后利用AAS即可证出;
(2)根据题意即可求出AD和BE的长,然后根据全等三角形的性质即可求出DC和CE,从而求出DE的长.
【详解】(1)证明:由题意得:,,
∴,
∴,

在和中

∴;
(2)解:由题意得:,
∵,
∴,
∴,
答:两堵木墙之间的距离为.
【点睛】此题考查的是全等三角形的应用,掌握全等三角形的判定及性质是解决此题的关键.
33.(1)见解析;(2)见解析
【分析】(1)先根据角的和差可得∠ABE=∠CBD ,再根据三角形全等的判定定理即可得证;
(2)先根据三角形全等的性质可得 ∠A=∠C ,再根据对顶角相等可得 ∠AFB=∠CFE ,然后根据三角形的内角和定理、等量代换即可得证.
【详解】(1)证明:∵∠1=∠2,
∴∠ABE=∠CBD,
在△ABE和中,
∵,
∴△ABE≌△CBD(SAS),
∴AE=CD;
(2)由(1)已证,知,△ABE≌△CBD
∴∠A=∠C,
又∵∠AFB=∠CFE,
∴∠1=∠3.
【点睛】本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.
34.(1)是等边三角形;(2)
【分析】(1)由性质可得a=b,b=c,故为等边三角形.
(2)根据三角形任意两边和大于第三边,任意两边差小于第三边判定正负,再由绝对值性质去绝对值计算即可.
【详解】(1)∵
∴且

∴是等边三角形.
(2)∵是的三边长
∴b-c-a<0,a-b+c>0,a-b-c<0
原式=
=
=
【点睛】本题考查了三角形三条边的关系以及绝对值化简,根据三角形任意两边和大于第三边,任意两边差小于第三边判定绝对值内数值正负是解题的关键.
35.(1)详见解析;(2)12
【分析】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,
(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.
【详解】(1)证明:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°,
∴在Rt△BED和Rt△CFD中
∴Rt△BED≌Rt△CFD(HL),
∴DE=DF,
∵DE⊥AB,DF⊥AC,
∴AD平分∠BAC;
(2)解:∵Rt△BED≌Rt△CFD,
∴AE=AF,CF=BE=4,
∵AC=20,
∴AE=AF=20﹣4=16,
∴AB=AE﹣BE=16﹣4=12.
【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.
36.(1)6﹣2t
(2)是,详见解析
(3)当a=时,能够使△BPD与△CQP全等
【分析】(1)直接根据时间和速度表示PC的长;
(2)根据SAS证明△CQP≌△BPD即可;
(3)因为点P、Q的运动速度不相等,所以PB≠CQ,那么PB只能与PC相等,则PB=PC=3,CQ=BD=4,得2t=3,at=4,解出即可.
【详解】(1)由题意得:PB=2t,
则PC=6﹣2t;
故答案为:6﹣2t;
(2)理由是:当t=a=1时,PB=CQ=2,
∴PC=6﹣2=4,
∵∠B=∠C,
∴AC=AB=8,
∵D是AB的中点,
∴BD=AB=4,
∴BD=PC=4,
在△CQP和△BPD中,
∵,
∴△CQP≌△BPD(SAS);
(3)∵点P、Q的运动速度不相等,
∴PB≠CQ,
当△BPD与△CQP全等,且∠B=∠C,
∴BP=PC=3,CQ=BD=4,
∵BP=2t=3,CQ=at=4,
∴t=,
∴a=4,a=,
∴当a=时,能够使△BPD与△CQP全等.
【点睛】此题考查了全等三角形的判定,主要运用了路程=速度×时间的公式,要求熟练运用全等三角形的判定和性质.
37.(1)△ACP≌△BPQ,线段PC与线段PQ垂直,理由见解析
(2)存在或,使得△ACP与△BPQ全等
【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(2)由∠A=∠B,△ACP和△BPQ全等,则分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.
【详解】(1)解:当t=1时,AP=BQ=1cm,
∵AB=4cm,
∴BP=AB-AP=3cm,
又AC=3cm,
∴BP=AC又∠A=∠B=90°,
在△ACP和△BPQ中,

∴△ACP≌△BPQ(SAS),
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即线段PC与线段PQ垂直.
(2)存在,
理由:由题意,得AC=3cm,AP=tcm,BP=(4-t)cm,BQ=xtcm.
①若△ACP≌△BPQ,
则AC=BP,AP=BQ,
则,
解得;
②若△ACP≌△BQP,
则AC=BQ,AP=BP,
则,
解得:;
综上所述,存在或,使得△ACP与△BPQ全等.
【解答】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.
38.(1) 不成立,DE=AD-BE,理由见解析;(2) DE=BE-AD
【分析】(1)DE、AD、BE之间的数量关系是DE=AD-BE.由垂直的性质可得到∠CAD=∠BCE,证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD-BE;
(2)DE、AD、BE之间的关系是DE=BE-AD.证明的方法与(1)一样.
【详解】(1)不成立.
DE、AD、BE之间的数量关系是DE=AD-BE,
理由如下:如图,
∵∠ACB=90°,BE⊥CE,AD⊥CE,,
∴∠ACD+∠CAD=90°,
又∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ACD和△CBE中,

∴△ACD≌△CBE(AAS),
∴AD=CE,CD=BE,
∴DE=CE-CD=AD-BE;
(2)结论:DE=BE-AD.
∵∠ACB=90°,BE⊥CE,AD⊥CE,,
∴∠ACD+∠CAD=90°,
又∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ACD和△CBE中,

∴△ADC≌△CEB(AAS),
∴AD=CE,DC=BE,
∴DE=CD-CE=BE-AD.
【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)