(共38张PPT)
小结与复习
第2章 四边形
一、多边形的内角和与外角和
多边形的内角和等于(n-2) ×180 °
多边形的外角和等于 360 °
正多边形每个内角的度数是
正多边形每个外角的度数是
要点梳理
几 何 语 言
文字叙述
对边平行
对边相等
对角相等
∴ AD=BC ,AB=DC.
∵ 四边形ABCD是平行四边形,
∴ ∠ A=∠C,∠ B=∠D.
∵ 四边形ABCD是平行四边形,
二、平行四边形的性质
对角线互
相平分
∵ 四边形ABCD是平行四边形,
∴ OA=OC,OB=OD.
∵ 四边形ABCD是平行四边形,
∴ AD∥BC ,AB∥DC.
A
B
C
D
O
几 何 语 言
文字叙述
两组对边相等
一组对边平行且相等
∴四边形ABCD是平行四边形,
∵ AD=BC ,AB=DC.
∴ 四边形ABCD是平行四边形,
∵ AB=DC,AB∥DC.
三、平行四边形的判定
对角线互相平分
∴ 四边形ABCD是平行四边形,
∵ OA=OC,OB=OD.
两组对边分别平行(定义)
∵ 四边形ABCD是平行四边形,
∴ AD∥BC ,AB∥DC.
平行线之间的距离处处相等
A
B
C
D
O
1.中心对称
把一个图形绕着某一个点旋转____,如果它能与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.
180°
四、中心对称
2.中心对称的特征
中心对称的特征:在成中心对称的两个图形中,对应点所连线段都经过 ,并且被对称中心________.
3.中心对称图形
把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.
对称中心
平分
1.三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线.
2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
五、三角形的中位线
用符号语言表示
∵DE是△ABC的中位线
∴DE∥BC,
项目
四边形 对边 角 对角线
平行且相等
平行
且四边相等
平行
且四边相等
四个角
都是直角
对角相等
邻角互补
四个角
都是直角
互相平分且相等
互相垂直平分且相等,每一条对角线平分一组对角
互相垂直且平分,每一条对角线平分一组对角
六、矩形、菱形、正方形的性质
四边形 条件
①定义:有一内角是直角的平行四边形
②三个角是直角的四边形
③对角线相等的平行四边形
①定义:一组邻边相等的平行四边形
②四条边都相等的四边形
③对角线互相垂直的平行四边形
①定义:一组邻边相等且有一个角是直角的平行四边形
②有一组邻边相等的矩形
③有一个角是直角的菱形
七、矩形、菱形、正方形的判定方法
考点一 多边形的内角和与外角和
例1:已知一个多边形的每个外角都是其相邻内角度数的 ,求这个多边形的边数.
解: 设此多边形的外角的度数为x,则内角的度数为4x,
则x+4x=180°,解得 x=36°.
∴边数n=360°÷36°=10.
考点讲练
1.一个正多边形的每一个内角都等于120 °,则其边数是 .
6
【解析】 因为该多边形的每一个内角都等于120°,所以它的每一个外角都等于60 °.所以边数是6.
归纳拓展
在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.
针对训练
考点二 平行四边形的性质
例2 如图,在平行四边形ABCD中,下列结论中错误的是( )
A.∠1=∠2 B.∠BAD=∠BCD
C.AB=CD D.AC=BC
【解析】A.∵四边形ABCD是平行四边形,
∴AB∥CD,∴∠1=∠2,故A正确;
B.∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,故B正确;
C.∵四边形ABCD是平行四边形,
∴AB=CD,故C正确;
D
方法总结
主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等.
针对训练
2.如图,已知 ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,
(平行四边形的对角相等,对边相等)
∵AE平分∠BAD,CF平分∠BCD,
∴∠EAB= ∠BAD,∠FCD= ∠BCD,∴∠EAB= ∠FCD,
在△ABE和△CDF中
∠B=∠D
AB=CD ∴△ABE≌△CDF,∴BE=DF.
∠EAB=∠FCD
∵AD=BC ∴AF=EC.
例3 如图,在 ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )
A.4cm B.5cm C.6cm D.8cm
【解析】∵四边形ABCD是平行四边形,
AC=10cm,BD=6cm
∴OA=OC= AC=5cm,OB=OD= BD=3cm,
∵∠ODA=90°,
∴AD= =4cm.
A
方法总结
主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.
【解析】∵在 ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,
∴AO=CO=12cm,BO=19cm,AD=BC=28cm,
∴△BOC的周长是:BO+CO+BC=12+19+28=59(cm).
针对训练
3.如图,在 ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是( )
A.45cm B.59cm C.62cm D.90cm
B
考点三 平行四边形的判定
例4 如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
A.OA=OC,OB=OD
B.∠BAD=∠BCD,AB∥CD
C.AD∥BC,AD=BC
D.AB=CD,AO=CO
D
平行四边形的判定方法:
①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形.
方法总结
针对训练
4.如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,
(1)求证:AB=EF.
(1)证明:∵AC∥DE,
∴∠ACD=∠EDF,
∵BD=CF,∴BD+DC=CF+DC,
即BC=DF,
又∵∠A=∠E,∴△ABC≌△EFD(AAS),
∴AB=EF;
(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.
(2)猜想:四边形ABEF为平行四边形,
理由如下:由(1)知△ABC≌△EFD,
∴∠B=∠F,∴AB∥EF,
又∵AB=EF,
四边形ABEF为平行四边形(一组对边平行且相等的四边形是平行四边形).
考点四 中心对称及中心对称图形
例5 下列图形中,既是轴对称图形,又是中心对称图形的是( ).
A B C D
D
【解析】 图A.图B都是轴对称图形,图C是中心对称图形,图D既是中心对称图形也是轴对称图形.
5.下列说法不正确的是( )
A.任何一个具有对称中心的四边形都是平行四边形
B.平行四边形既是轴对称图形,又是中心对称图形
C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形
D.正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条.
B
针对训练
考点五 三角形的中位线
例6 已知:AD是△ABC的中线,E是AD的中点,F是BE的延长线与AC的交点.求证: .
证明:过点D作DH∥BF,交AC于点H.
∵AD是△ABC的中线.
∴D是BC的中点.
∴CH=HF= CF
∵E是AD的中点,EF∥DH.
∴AF=FH.
∴AF= FC
A
B
C
D
E
F
H
针对训练
6.若三角形的三条中位线之比为 6 : 5 : 4 ,三角形的周长为 60 cm,那么该三角形中最长边的边长为___;
解析:设三角形的三条中位线之长分别为6x,5x,4x,
则三角形的三条边长分别为12x,10x,8x,
依题意有 12x+10x+8x=60,
解得 x=2.
所以,最长边12x=24(cm).
24 cm
例7:如图,在矩形ABCD中,两条对角线相交于点O,
∠AOD=120°,AB=2.5 ,求矩形对角线的长.
解:∵四边形ABCD是矩形.
∴AC = BD(矩形的对角线相等).
OA= OC= AC,OB = OD = BD ,
(矩形对角线相互平分)
∴OA = OD.
A
B
C
D
O
考点六 矩形的性质和判定
A
B
C
D
O
∵∠AOD=120°,
∴∠ODA=∠OAD= (180°- 120°)=30°.
又∵∠DAB=90° ,
(矩形的四个角都是直角)
∴BD = 2AB = 2 ×2.5 = 5.
7.如图,在□ABCD中,对角线AC与BD相交于点O , △ABO是等边三角形, AB=4,求□ABCD的面积.
解:∵四边形ABCD是平行四边形,
∴OA= OC,OB = OD.
又∵△ABO是等边三角形,
∴OA= OB=AB= 4,∠BAC=60°.
∴AC= BD= 2OA = 2×4 = 8.
A
B
C
D
O
针对训练
∴□ABCD是矩形 (对角线相等的平行四边形是矩形).
∴∠ABC=90°(矩形的四个角都是直角) .
在Rt△ABC中,由勾股定理,得
AB2 + BC2 =AC2 ,
∴BC= .
∴S□ABCD=AB·BC=4× =
A
B
C
D
O
8.如图,O是菱形ABCD对角线的交点,作BE∥AC,CE∥BD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.
D
A
B
C
E
O
解:四边形CEBO是矩形.
理由如下:已知四边形ABCD是菱形.
∴AC⊥BD.
∴∠BOC=90°.
∵BE∥AC,CE∥BD,
∴四边形CEBO是平行四边形.
∴四边形CEBO是矩形(有一个角是直角的平行四边形是矩形).
例8:如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD =6,求菱形的边长AB和对角线AC的长.
解:∵四边形ABCD是菱形,
∴AC⊥BD(菱形的对角线互相垂直)
OB=OD= BD = ×6=3(菱形的对角线互相平分)
在等腰三角形ABC中,
∵∠BAD=60°,
∴△ABD是等边三角形.
∴AB = BD = 6.
∴在Rt△AOB中,AO
∴AC=2AO=
A
B
C
O
D
考点七 菱形的性质和判定
证明:在△AOB中.
∵AB= , OA=2,OB=1.
∴AB2=AO2+OB2.
∴ △AOB是直角三角形, ∠AOB是直角.
∴AC⊥BD.
∴ □ABCD是菱形
(对角线垂直的平行四边形是菱形).
9. 已知:如右图,在□ABCD中,对角线AC与BD相交于点O, AB= ,OA=2,OB=1. 求证: □ABCD是菱形.
A
B
C
O
D
针对训练
10.如图,两张等宽的纸条交叉重叠在一起,猜想重叠部分的四边形ABCD是什么形状?说说你的理由.
A
B
C
D
E
F
解:四边形ABCD是菱形.
过点C作AB边的垂线,交点为E,作AD边上的垂线,交点为F.
S 四边形ABCD=AD · CF =AB ·CE .
由题意可知 CE = CF 且 四边形ABCD是平行四边形.
∴AD = AB .
∴四边形ABCD是菱形.
例9 如图,在矩形ABCD中, BE平分∠ABC , CE平分∠DCB , BF∥CE , CF∥BE.
求证:四边形BECF是正方形.
F
A
B
E
C
D
解析:先由两组平行线得出四边形BECF为平行四边形;再由一组邻边相等可得菱形;最后由一个直角,得出是正方形.
45°
45°
考点八 正方形的性质和判定
F
A
B
E
C
D
证明: ∵ BF∥CE,CF∥BE,
∴四边形BECF是平行四边形.
∵四边形ABCD是矩形,
∴ ∠ABC = 90°, ∠DCB = 90°,
∵BE平分∠ABC, CE平分∠ DCB,
∴∠EBC = 45°, ∠ECB = 45°,
∴ ∠ EBC =∠ ECB .
∴ EB=EC,∴□ BECF是菱形 .
在△EBC中
∵ ∠EBC = 45°,∠ECB = 45°,
∴∠BEC = 90°,
∴菱形BECF是正方形.(有一个角是直角的菱形是正方形)
平 行 四 边 形
性质
①对边平行且相等
②对角相等,邻角互补
③对角线互相平分
判定
①两组对边分别平行的
②两组对边分别相等的
③一组对边平行且相等的
④对角线互相平分的
四 边 形
平 行 四 边 形
课堂小结
三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
多边形的内角和与外角和
内角和计算公式
(n-2) × 180 °(n ≥3的整数)
外角和
多边形的外角和等于360°
特别注意:与边数无关
正多
边形
内角= ,外角=
四边形的分类及转化
有一个角是90°
(或对角线相等)
有一对邻边相等
(或对角线互相垂直)
平行四边形
矩形
菱形
正方形
一组邻边相等且一个内角为直角
(或对角线互相垂直且相等)
有一个角是90°
(或对角线相等)
有一对邻边相等
(或对角线互相垂直)
课堂小结