课件31张PPT。§8.1 不等式及其基本性质 在古代,我们的祖先就懂得了翘翘板的工作原理,并且根据这一原理设计出了一些简单机械,
并把它们用到了生活实践当中. 由此可见,“不相等”处处可见。
从今天起,我们开始学习一类新的数学知识:不等式.不相等 处处可见不等关系问题1:用适当的符号表示下列关系:
(1) 与3的和不大于6;
(2) 的5倍与1的差小于 的3倍;
(3)a与b的差是负数。
2x+3≤6a-b<05x-1<3x不等式的定义用不等号(>、≥、<、≤或≠)表示不等关系的式子叫做不等式注:不大于,即小于或等于,用“≤”表示;
不小于,即大于或等于,用“≥”表示。如以上的2x+3≤6,a-b<0等都是不等式。
判断下列式子是不是不等式:(1)-3<0; (2)4x+3y>0
(3)x=3;(4) X2+xy+y2
(5)x≠5; (6)X+2>y+5;
不等式的性质思考一下等式具有那些性质?
不等式是否具有这些类似性质? 等式基本性质1:
等式的两边都加上(或减去)同一个整式,等式仍旧成立等式基本性质2:
等式的两边都乘以(或除以)同一个不为0的数,等式仍旧成立如果a=b,那么a±c=b±c如果a=b,那么ac=bc或 (c≠0),等式基本性质3(对称性)如果a=b,那么b=a。等式基本性质4(传递性)如果a=b,b=c那么a=c不等式是否具有类似的性质呢?如果 7 > 3那么 7+5 ____ 3+ 5 , 7 -5____3-5你能总结一下规律吗?>>如果-1< 3,
那么-1+2____3+2, -1- 4____3 - 4<<不等式基本性质1:不等式的两边都加上(或减去)同一数或同一个整式,即:如果____,那么_______. 不等号的方向不变。a>ba±c>b±c_______________ 7÷5 ____ 3÷ 5 ,
7 ÷ (-5)____3÷ (-5)不等式还有什么类似的性质呢?已知 7 > 3那么 7×5 ____ 3× 5 ,
7 ×(-5)____3×(-5),你能再总结一下规律吗?>>已知-1< 3,
那么-1×2____3×2,
-1×(- 4)____3×( - 4),-1÷2____3÷2,
-1÷ (- 4)____3÷ ( - 4)>><<<<———————————————————————————————————————————————————————————————————————————————- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 不等式基本性质2:不等式的两边都乘以(或除以)同一个____,不等号的方向____。不等式基本性质3:不等式的两边都乘以(或除以)同一个____,不等号的方向____。如果________,那么______________不变正数a>b,c>0ac>bc (或 )负数改变如果________,那么______________a>b,c<0ac
5,那么55 ? 5b,那么bb,b>c,那么a>c今天学的是不等式的五个基本性质:不等式的基本性质1:
如果a >b,那么a±c>b±c.就是说,不等式两边都加上 (或减去)同一个数(或同一整式),不等号方向不变。
不等式基本性质2:
如果a >b,c > 0 ,那么 ac>bc(或 ) 就是说不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。不等式的对称性:
如果a>b,那么b 如果a>b,b>c,那么a>c不等式基本性质3:
如果a>b,c<0 那么ac (2)a÷3____b÷3
(3) 0.1a____0.1b;
(4) -4a____-4b
(5) 2a+3____2b+3;
(6) (m2+1) a ____ (m2+1)b (m为常数)>>>>><基本性质1基本性质2基本性质2基本性质2、1基本性质3基本性质2例2:判断下列各题的推导是否正确?为什么(学生口答)
(1)因为7.5>5.7,所以-7.5<-5.7;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
答:(1)正确,根据不等式基本性质3.(2)正确,根据不等式基本性质1.(3)正确,根据不等式基本性质2.(4)正确,根据不等式基本性质1.(5)不对,应分情况逐一讨论.
当a>0时,3a>2a.(不等式基本性质2)
当 a=0时,3a=2a.
当a<0时,3a<2a.(不等式基本性质3) 1、若m>n,判断下列不等式是否正确:
(1)m-7(2)3m<3n ( )
(3)-5m>-5n ( )
(4) ( )
(5) m+5≥n+5 ( )下列是由a"连接.填一填(1)a-1 b-1;
(2)-a -b;
(3)-a+1 -b+1;
(4)2a-1 2b-1. <><>(1)x(2)若-5a<-5b,则a(3)若-a>-b,则2-a>2-b; ( )
(4)若a>b,则ac2>bc2; ( )
(5)若ac2>bc2,则a>b; ( ) (6)若a>0,且(b-1)a<0,则b>1. ( )辩一辩√×√√××例2:将下列不等式化成 X > a或 x < a的形式(1) x-5 -1(2) -2x 3(3) 7x 6x -6>><不等式的基本性质有什么用呢?(1) x-5 -1>解:根据不等式的基本性质__,两边都_____,得x>-1+5即x>41加上5解:根据不等式的基本性质___,两边都______,得(2) -2x 3>3除以-2(3) 7x 6x -6<解:根据不等式的基本性质__,两边都_______,得 7x- 6x < -6即x< -61减去6x知识拓展:(1) ∵ 2a < 3a , ∴a是____数(3) ∵ ax < a 且 x > 1 ,
∴a是____数(2) ∵ , ∴a是____数正正负今天学的是不等式的五个基本性质:不等式的基本性质1:
如果a >b,那么a±c>b±c.就是说,不等式两边都加上 (或减去)同一个数(或式子),不等号方向不变。
不等式基本性质2:
如果a >b,c > 0 ,那么 ac>bc(或 ) 就是说不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。本课小结:不等式的对称性:
如果a>b,那么b如果a>b,b>c,那么a>c不等式基本性质3:
如果a>b,c<0 那么ac (1) x – 3 < y – 3 (2)- 5 x < - 5 y
(3) - 3 x +2 < - 3 y + 2 (4)- 3 x + 2 > - 3y + 2 3、已知a>b,若a<0,则a2 ab;若a>0,则a2 ab. 4、下列各式分别在什么条件下成立?
(1) a > - a (2) a2 > a补充作业:下课!