§18.1.1 平行四边形的性质
知识技能目标
1.通过回忆平行四边形的概念和实验操作,理解并掌握平行四边形的特征:平行四边形的对边平行且相等,对角相等;
2.会利用平行四边形的特征进行有关角和边的计算;
3.能列方程解图形计算问题.
过程性目标
通过对图形变换的操作和观察,经历探索平行四边形特征的过程,体会研究几何图形性质的方法.
教学重点:平行四边形的性质
教学难点:平行四边形性质的得出,规范数学语言的表达
课前准备
1.通过观察,寻找现实生活中平行四边形的实例;
2.准备一些方格纸、剪刀,几只图钉.
教学过程
一、创设情境
展示课件,欣赏一组平行四边形的图片
师 平行四边形是我们现实生活中常见的一种图形,小学里我们已经有所了解,请同学们说出观察后发现的现实生活中平行四边形的例子.
生 竹篱笆格子、工厂的伸缩大门、教室内铺的平行四边形地砖图案…….
师 很好!再请同学们想想小学里是怎样识别一个四边形是平行四边形的?
生 有两组对边分别平行的四边形就是平行四边形.
师 对!你们的记忆力真棒!有两组对边分别平行的四边形就叫做平行四边形(parallelogram),平行四边形ABCD可记作“ABCD ”.下面请同学们找找下列哪些图形是平行四边形?我们来比一比,看谁找得又快又正确.
在学生找出平行四边形的基础上,师生共同归纳:
平行四边形的一个主要特征:两组对边分别平行.
师 那么平行四边形还有什么其他特征呢?
二、探究归纳
师 请同学们拿出方格纸,思考:如何在方格纸上画出ABCD ?
(分组讨论,老师边看边指导).
生 步骤 1.画两条平行线.
2.在两条平行线上分别取点A和点B,连结AB.
3.沿着水平方向平移AB到DC,就得到ABCD.
师 我们刚才画平行四边形的过程就是利用了平行四边形的特征,请同学们试一试,用什么方法可以再画一个和ABCD一样大小的EFGH?(学生边讨论边操作,然后介绍方法,教师作适当的点评,并加以表扬.)并比较这两个平行四边形的对应边、对应角的关系?
生 这两个平行四边形的对应边、对应角相等.
师 在 ABCD中 连结AC、BD,它们的交点记为O.将两个平行四边形完全重合地叠在一起,用一枚图钉在O 穿过,将 ABCD绕点O旋转180°,请同学们观察旋转后的ABCD和纸上所画的EFGH是否重合?ABCD是一个什么图形?
生 是一个中心对称图形.
师 ABCD既然是一个中心对称图形,那么它的对边,对角还有什么关系?(请同学们继续讨论,并把你们讨论的结果告诉大家).
生 ∵ABCD是一个中心对称图形,
且 O是对称中心,
∴AD = BC,AB = CD,
∠A = ∠B, ∠C =∠D.
师生共同归纳:平行四边形的对边相等,对角相等.
三、实践应用
例1 如图,在ABCD中,已知∠A=50°,AB=9,周长等于28,(1)求其它各个内角的度数(2)求其余三边的长。.
例2 已知,ABCD,若AE平分∠DAB,AB=5 cm,AD=9 cm,
则EC=
B E C
A D
四、巩固练习:见课件
五、交流反思
师 本堂课我们探索了平行四边形的两个特征,请同学谈谈你的收获.
生 平行四边形的对边分别平行且相等;
平行四边形的对角相等..
下面请同学用几何语言叙述这两个特征 .
生 1.平行四边形的对边平行且相等;
∵ 四边形ABCD是平行四边形,
∴ AB∥CD,AD∥BC(平行四边形的对边平行);
AB = CD,AD = BC (平行四边形的对边相等).
2. 平行四边形的对角相等.
∵ 四边形ABCD是平行四边形,
∴∠A = ∠C,∠B= ∠D(平行四边形的对角相等).
五、作业;第100页第一题,第三题。
六、课后反思: