《志鸿全优设计》2013-2014学年高中数学湘教版必修2单元检测:第4章 向量(含答案)

文档属性

名称 《志鸿全优设计》2013-2014学年高中数学湘教版必修2单元检测:第4章 向量(含答案)
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2014-04-16 08:33:11

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
数学湘教版必修2第4章 向量单元检测
(时间:45分钟 满分:100分)
一、选择题(每小题5分,共40分)
1.(2011浙江台州高一期末检测)下列向量是单位向量的是(  )
A.a= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 B.a=(1,1)
C.a=(1,sin α) D.a=(cos α,sin α)
2.已知a=(-5,6),b=(-3,2),c=(x,y),若a-3b+2c=0,则c等于(  )
A.(-2,6) B.(-4,0)
C.(7,6) D.(-2,0)
3.在△ABC中,AB=5,BC=2,∠B=60°,则 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 的值为(  )
A. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 B.5 C. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 D.-5
4.(2012山东兖州高一模拟)已知向量 ( http: / / www.21cnjy.com )a=(sin θ,cos θ-2sin θ),b=(1,-3),若a∥b,则tan θ的值等于(  )21·cn·jy·com
A. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 B. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 C.-1 D.1
5.已知D是△ABC所在平面内一点, HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 + HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,则(  )
A. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 B. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4
C. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 D. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4
6.(2011山东潍坊高一期中检测)对于向 ( http: / / www.21cnjy.com )量a,b,e及实数x,y,x1,x2,λ,给出下列四个条件:①a+b=3e且a-b=5e;②x1a+x2b=0;③a=λb(b≠0)且λ唯一;④xa+yb=0(x+y=0).其中能使a与b共线的是(  )www.21-cn-jy.com
A.①② B.②④
C.①③ D.③④
7.(2011辽宁大连高一期末检测)设a=(-3,m),b=(4,3),若a与b的夹角是钝角,则实数m的取值范围是(  )21cnjy.com
A.m≠4且 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 B.m<4且 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 21世纪教育网
C.m>4 D.m<4
8.过点M(3,0)的直线交圆x2+y2-4x=0于A,B两点,C为圆心,则 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 的最大值等于(  )2·1·c·n·j·y
A. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 B. HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 C.2 D.-2
二、填空题(每小题5分,共15分)
9.(2011江苏灌云高一检测)已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则|a|=__________.【来源:21·世纪·教育·网】
10.已知定义|a×b|=|a||b|·sin θ,其中θ为向量a与b的夹角.若|a|=2,|b|=3,a·b=-4,则|a×b|=__________.21·世纪*教育网
11.(2011福建师大附中高一检测)如图,在正六边形ABCDEF中,有下列三个命题:① HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 + HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ;② HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 +2 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ;③ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .其中真命题的序号是__________.(写出所有真命题的序号)www-2-1-cnjy-com
HYPERLINK "http://www.21cnjy.com" INCLUDEPICTURE "../../../C55.EPS" \* MERGEFORMAT
三、解答题(每小题15分,共45分)
12.(2011山东烟台高一检测)已知向量a=(1,2),b=(-3,2).
(1)求|2a-4b|;
(2)若ka+2b与2a-4b平行,求k的值;
(3)若ka+2b与2a-4b的夹角是钝角,求实数k的取值范围.
13.如图,PQ过△OAB的重心G, HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =a, HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =b, HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =ma, HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =nb.求证: HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
HYPERLINK "http://www.21cnjy.com" INCLUDEPICTURE "../../../C56.EPS" \* MERGEFORMAT
14.已知向量a=(1,2),b=(cos α,sin α),设m=a+tb(t为实数).
(1)若 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,求当|m|取最小值时实数t的值;
(2)若a⊥b,问:是否存在实数t,使得向量a-b和向量m的夹角为 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,若存在,请求出t的值;若不存在,请说明理由.2-1-c-n-j-y
参考答案
1. 答案:D
解析:只有在D项中,|a|= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =1,是单位向量.
2. 答案:D
解析:依题意得c= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 a+ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 b
= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 (-5,6)+ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 (-3,2)=(-2,0).
3. 答案:D
解析: HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =| HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 |·| HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 |cos〈 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 〉=5×2×cos 120°=-5.
4. 答案:C
解析:由a∥b得-3sin θ=cos θ-2sin θ,于是-sin θ=cos θ,故tan θ= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =-1.
5. 答案:A
解析:由 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 + HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
得 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 + HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 + HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
因此 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 - HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 - HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
所以 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,即 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
6. 答案:C
解析:由a+b=3e和a-b=5e可得a=4e,b=-e,显然a与b共线,故①正确;③显然正确,故选C.21教育网
7. 答案:B
解析:因为a与b的夹角是钝角,所以a·b<0,
即3m-12<0,解得m<4,
但当a与b共线时,有-9=4m,解得 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,且这时a与b反向共线,夹角是π,不合题意,
故实数m的取值范围是m<4且 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
8. 答案:D
解析:由已知得圆的半径为2,圆心坐标为(2,0),21世纪教育网21世纪教育网
所以 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2×2×cos∠ACB.
因为直线过点M(3,0),
所以当该直线与CM垂直时,∠ACB最小,等于120°,这时cos ∠ACB取到最大值 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
所以 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 的最大值等于2×2× HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =-2.
9. 答案:2
解析:依题意2a-b=(3,n),由于2a-b与b垂直,所以-3+n2=0,解得n2=3,于是|a|= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2.21世纪教育网版权所有
10. 答案: HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4
解析:由于a·b=|a|·|b|cos θ,
所以 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
又θ∈[0,π],于是 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
故|a×b|=|a||b|sin θ=2×3× HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
11. 答案:①②
解析:由于 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 + HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
( http: / / www.21cnjy.com )
所以①正确;
设正六边形中心为O,
则 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2( HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 + HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ),
即 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 +2 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
所以②正确;
由于 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 - HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ·( HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 - HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 )= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =2| HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 |2>0,
所以不可能有 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,故③错误.
12.解:(1)∵2a-4b=(14,-4),
∴|2a-4b|= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
(2)∵ka+2b=(k-6,2k+4),
且ka+2b与2a-4b平行,21世纪教育网
∴14(2k+4)+4(k-6)=0,
即32k+32=0,∴k=-1.
(3)∵ka+2b与2a-4b的夹角是钝角,
∴(ka+2b)·(2a-4b)<0且k≠-1,
即14(k-6)-4(2k+4)<0且k≠-1,
∴ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 且k≠-1.
13. 证明:∵M是AB边的中点,
∴ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ( HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 + HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 )= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 (a+b).
∴ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 · HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 (a+b)= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 a+ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 b.
∴ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 - HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 =nb-ma,
HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 - HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 = HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 a+ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 b.
∵ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ∥ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,∴ HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
整理得mn= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 (m+n),即 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
14. 解:(1)因为 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,b= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,a·b= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
则 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4
= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
所以当 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 时,|m|取到最小值,最小值为 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 .
(2)由条件得 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
又因为|a-b|= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
|a+tb|= HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,
(a-b)·(a+tb)=5-t,
则有 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 ,且t<5,[来源:21世纪教育网]
整理得t2+5t-5=0,
所以存在 HYPERLINK "http://www.21cnjy.com" EMBED Equation.DSMT4 满足条件.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网