第2章 向量(广东省深圳市南山区)

文档属性

名称 第2章 向量(广东省深圳市南山区)
格式 rar
文件大小 590.4KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2007-08-09 07:39:00

文档简介

2.3.1 平面向量基本定理
一、课题:平面向量基本定理
二、教学目标:1.理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;
2.正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的
关系来用坐标表示;
3.掌握两向量的和、差,实数与向量积的坐标表示法。
三、教学重、难点:1.平面向量的坐标运算;
2.对平面向量的坐标表示的理解。
四、教学过程:
(一)复习:
1.平面向量的基本定理:;
2.在平面直角坐标系中,每一个点都可用一对实数表示,那么,每一个向量可否也用
一对实数来表示?
(二)新课讲解:
1.向量的坐标表示的定义:
分别选取与轴、轴方向相同的单位向量,作为基底,对于任一向量,,(),实数对叫向量的坐标,记作.
其中叫向量在轴上的坐标,叫向量在轴上的坐标。
说明:(1)对于,有且仅有一对实数与之对应;
(2)相等的向量的坐标也相同;
(3),,;
(4)从原点引出的向量的坐标就是点的坐标。
例1 如图,用基底,分别表示向量、、、, 并求出它们的坐标。
解:由图知:;



2.平面向量的坐标运算:
问题:已知,,求,.
解:
即.
同理:.
结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
3.向量的坐标计算公式:
已知向量,且点,,求的坐标.

归纳:(1)一个向量的坐标等于表示它的有向线段的终点坐标减去始点坐标;
(2)两个向量相等的充要条件是这二个向量的坐标相等。
4.实数与向量的积的坐标:
已知和实数,求
结论:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
例2 已知,,求,,的坐标.
解:=;;

例3 已知 ABCD的三个顶点的坐标分别为、、,求顶点的坐标。
解:设顶点的坐标为.
∵,,
由,得.
∴ ∴ ∴顶点的坐标为.
例4 (1)已知的方向与轴的正向所成的角为,且,则的坐标为,

(2)已知,,,且,求,.
解:(2)由题意,,
∴ ∴.
五、课堂小结:1.正确理解平面向量的坐标意义;
2.掌握平面向量的坐标运算;
3.能用平面向量的坐标及其运算解决一些实际问题。
六、作业:
补充:1.已知向量与相等,其中,,求;
2.已知向量,,,,且,求.
PAGE
- 3 -2.3.2平面向量的坐标运算
一、课题: 2.3.2平面向量的坐标运算
二、教学目标:1.掌握两向量平行时坐标表示的充要条件;
2.能利用两向量平行的坐标表示解决有关综合问题。
三、教学重、难点:1.向量平行的充要条件的坐标表示;
2.应用向量平行的充要条件证明三点共线和两直线平行的问题。
四、教学过程:
(一)复习:
1.已知,,求,的坐标;
2.已知点,及,,,求点、、的
坐标。
归纳:(1)设点,,则;
(2),,则,
,;
3.向量与非零向量平行的充要条件是:.
(二)新课讲解:
1.向量平行的坐标表示:
设,,(),且,
则,∴.
∴,∴.
归纳:向量平行(共线)的充要条件的两种表达形式:
①;
②且设,()
例1 已知,,且,求.
解:∵,∴.∴.
例2 已知,,,求证、、三点共线.
证明:,,
又,∴.∵直线、直线有公共点,
∴,,三点共线。
例3 已知,,若与平行,求.
解:=
∴, ∴,∴.
例4 已知,,,,则以,为基底,求.
解:令,则.
, ∴,
∴, ∴.
例5 已知点,,,,向量与平行吗?直线平
行与直线吗?
解:∵,=,
又, ∴;
又,,,
∴与不平行,
∴、、不共线,与不重合,
所以,直线与平行。
五、小结:1.熟悉平面向量共线充要条件的两种表达形式;
2.会用平面向量平行的充要条件的坐标形式证明三点共线和两直线平行;
3.明白判断两直线平行与两向量平行的异同。
六、作业:
补充:1.已知,,,且,,求点,的坐标及向量的坐标;
2.已知,,,试用,表示;
3.设,,,且,求角.
PAGE
- 1 -2.2.3 向量的数乘(1)
一、课题:向量的数乘(1)
二、教学目标:1.掌握实数与向量的积的定义;
2.掌握实数与向量的积的运算律,并进行有关的计算;
3.理解两向量共线(平行)的充要条件,并会判断两个向量是否共线。
三、教学重、难点:1.实数与向量的积的定义及其运算律,向量共线的充要条件;
2.向量共线的充要条件及其应用。
四、教学过程:
(一)复习:
已知非零向量,求作和.
如图:,.
(二)新课讲解:
1.实数与向量的积的定义:
一般地,实数与向量的积是一个向量,记作,它的长度与方向规定如下:
(1);
(2)当时,的方向与的方向相同;
当时,的方向与的方向相反;
当 时,.
2.实数与向量的积的运算律:
(1)(结合律);
(2)(第一分配律);
(3)(第二分配律).
例1 计算:(1); (2); (3).
解:(1)原式=; (2)原式=; (3)原式=.
3.向量共线的充要条件:
定理:(向量共线的充要条件)向量与非零向量共线的充要条件是有且只有一个实数,使得.
例2 如图,已知,.试判断与是否共线.
解:∵
∴与共线.
例3 判断下列各题中的向量是否共线:
(1),;
(2),,且,共线.
解:(1)当时,则,显然与共线.
当时, ,∴与共线.
(3)当,中至少有一个为零向量时,显然与共线.
当,均不为零向量时,设
∴,
若时,,,显然与共线.
若时,,
∴与共线.
例4 设是两个不共线的向量,已知,,,
若,,三点共线,求的值。
解:
∵,,三点共线,∴与共线,即存在实数,使得,
即是.
由向量相等的条件,得 ,∴.
五、课堂练习:
六、小结:1.掌握实数与向量的积的定义;
2.掌握实数与向量的积的运算律,并进行有关的计算;
3.理解两向量共线(平行)的充要条件,并会判断两个向量是否共线。
七、作业:
补充:1.设是两个不共线的向量,而和共线,求实数的值;
2.设二个非零向量不共线,如果,,
,求证,,三点共线。
PAGE
- 2 -2.2.1 向量的加法
一、课题:向量的加法
二、教学目标:1.理解向量加法的概念及向量加法的几何意义;
2.熟练掌握向量加法的平行四边形法则和三角形法则,会作已知两向量的和
向量;
3.理解向量的加法交换律和结合律,并能熟练地运用它们进行向量计算。
三、教学重、难点:1.如何作两向量的和向量;
2.向量加法定义的理解。
四、教学过程:
(一)复习:
1.向量的概念、表示法。
2.平行向量、相等向量的概念。
3.已知点是正六边形的中心,则下列向量组中含有相等向量的是( )
()、、、 ()、、、
()、、、 ()、、、
(二)新课讲解:
1.向量的加法:求两个向量和的运算叫做向量的加法。表示:.
规定:零向量与任一向量,都有.
说明:①共线向量的加法:
②不共线向量的加法:如图(1),已知向量,,求作向量.
作法:在平面内任取一点(如图(2)),作,,则 .
(1) (2)
2.向量加法的法则:
(1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。
表示:.
(2)平行四边形法则:以同一点为起点的两个已知向量,为邻边作,则
则以为起点的对角线就是与的和,这种求向量和的方法称为向量加法的平行
四边形法则。
3.向量的运算律:
交换律:.
结合律:.
说明:多个向量的加法运算可按照任意的次序与任意的组合进行:
例如:;.
4.例题分析:
例1 如图,一艘船从点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,求船实际航行速度的大小与方向(用与流速间的夹角表示)。
解:设表示船向垂直与对岸行驶的速度,表示水流的
速度,以、为邻边作,则就是船实际
航行的速度,
在△中,,,
∴,

∴.
答:船实际航行速度的大小为,方向与流速间的夹角为.
例2 已知矩形中,宽为,长为,,,,
试作出向量,并求出其模的大小。
解:作,则如图

∴,
答:向量就是向量,其模为.
例3 一架飞机向北飞行千米后,改变航向向东飞行千米,
则飞行的路程为 400千米 ;两次位移的和的方向为北偏东,
大小为千米.
五、课堂练习:(1)化简;.
六、小结:1.理解向量加法的概念及向量加法的几何意义;
2.熟练掌握向量加法的平行四边形法则和三角形法则。
七、作业:补充:已知两个力,的夹角是直角,且知它们的合力与的夹角是,
牛,求和的大小。
PAGE
- 1 -2.2.3 向量的数乘(2)
一、课题:向量的数乘(2))
二、教学目标:1.了解平面向量基本定理的概念;
2.通过定理用两个不共线向量来表示另一向量或将一个向量分解为两个
向量;
3.能运用平面向量基本定理处理简单的几何问题。
三、教学重、难点:1.平面向量基本定理的应用;
2.平面向量基本定理的理解。
四、教学过程:
(一)复习引入:
(1)向量的加法运算、向量共线定理;
(2)设,是同一平面内的两个不共线的向量,是这一平面内的任一向量,下面我们
来研究向量与, 的关系。
(二)新课讲解:
1.平面向量基本定理:
如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使.其中我们把不共线的向量,叫做表示这一平面所有向量的一组基底。
注:①,均非零向量;
②,不唯一(事先给定);
③,唯一;
④时,与共线;时,与共线;时,.
2.例题分析:
例1 已知向量,(如图),求作向量.
作法:1.如图(2),任取一点,作,;
2.作 OACB,于是是所求作的向量。
例2 如图, 的两条对角线相交于点,且,,用、表示、、
和.
解:在中, ABCD ∵,

∴,
,,

例3 如图,、不共线,,用、表示.
解:∵,

=.
例4 已知梯形中,,,分别是、的中点,若,,用,表示、、.
解:(1)∵
∴==
(2)
(3)连接,则,

例5 已知在四边形中,,,,
求证:是梯形。
证明:显然
=
∴, 又点不在
∴是梯形。
五、小结:1.熟练掌握平面向量基本定理;
2.会应用平面向量基本定理.充分利用向量的加法、减法及实数与向量的积的几何表
示。
六、作业:
补充:1.设是的重心.若,,试用,表示向量.;
2.已知:如图,,.
(1)求证:;(2)求与的面积之比.
3.设,是两个不共线向量,求与
共线的充要条件。
PAGE
- 2 -2.4 向量的数量积(2)
一、课题:向量数量积(2)
二、教学目标:
要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。
三、教学重、难点:1.平面向量数量积的坐标表示及由其推出的重要公式;
2.向量数量积坐标表示在处理有关长度、角度、垂直问题中的应用。
四、教学过程:
(一)复习:
1.两平面向量垂直的充要条件;
2.两向量共线的坐标表示;
3.轴上单位向量,轴上单位向量,则:,,.
(二)新课讲解:
1.向量数量积的坐标表示:设 ,则,
∴.
从而得向量数量积的坐标表示公式:.
2.长度、夹角、垂直的坐标表示:
①长度: ;
②两点间的距离公式:若,则;
③夹角:;
④垂直的充要条件:∵,即
(注意与向量共线的坐标表示的区别)
3.例题分析:
例1 设,求.
解:.
例2 已知,求证是直角三角形。
证明:∵,
∴∴
所以,是直角三角形。
说明:两个向量的数量积是否为零,是判断相应的两条直线是否垂直的重要方法之一。
例3 如图,以原点和为顶点作等腰直角,使,
求点和向量的坐标。
解:设,则,,
∵, ∴,
即:,
又∵, ∴, 即:,
由或,
∴,或, .
例4 在中,,,求值。
解:当时,, ∴ ∴,
当时,,,
∴ ∴,
当时,,∴ ∴.
五、课堂练习 课本练习1,2.
六、小结:两向量数量积的坐标表示:长度、夹角、垂直的坐标表示。
七、作业: 课本习题5.7 第1,4,5题。
补充:已知,,
(1)求证: (2)若与的模相等,且,求的值。
B
B
B
O
A
PAGE
- 1 -2.4 向量的数量积(2)
一、课题:向量的数量积
二、教学目标:要求学生掌握平面向量数量积的运算律,明确向量垂直的充要条件。
三、教学重、难点:向量数量积的运算律和运算律的理解;
四、教学过程:
(一)复习:
1.平面向量数量积(内积)的定义及其几何意义、性质;
2.判断下列各题正确与否:
①若,则对任一向量,有; ( √ )
②若,则对任一非零向量,有; ( × )
③若,,则; ( × )
④若,则至少有一个为零向量; ( × )
⑤若,则当且仅当时成立; ( × )
⑥对任意向量,有. ( √ )
(二)新课讲解:
1.交换律:
证:设夹角为,则,
∴.
2.
证:若,,
, ,
若,,


3..
在平面内取一点,作, ,,
∵(即)在方向上的投影等于
在方向上的投影和,
即:
∴,
∴ 即:.
4. 例题分析:
例1 已知都是非零向量,且与垂直,与垂直,求与的夹角。解:由题意可得: ①

两式相减得:, 代入①或②得:,
设的夹角为,则
∴,即与的夹角为.
例2求证:平行四边形两条对角线平方和等于四条边的平方和。
证明:如图: ABCD,,,,
∴,
而,
∴,
所以, + = = .
例3 为非零向量,当的模取最小值时,
①求的值; ②求证:与垂直。
解:①,
∴当时, 最小;
②∵,
∴与垂直。
例4 如图,是的三条高,求证:相交于一点。
证:设交于一点,,


∴得,
即, ∴,
又∵点在的延长线上,∴相交于一点。
五、小结:数量积的运算律和垂直充要条件的应用。
六、作业: 课本 习题5.6 第2,4题。
补充:1.向量的模分别为,的夹角为,求的模;
2.设是两个不相等的非零向量,且,求与的夹角。
3.设,是相互垂直的单位向量,求.
H
F
E
D
C
B
A
D C
A B
C
B1
A1
O
B
A
2
1
PAGE
- 1 -2.4 向量的数量积(1)
一、课题:向量的数量积(1)
二、教学目标:1.理解平面向量数量积的概念;
2.掌握两向量夹角的概念及其取值范围;
3.掌握两向量共线及垂直的充要条件;
4.掌握向量数量积的性质。
三、教学重、难点:向量数量积及其重要性质。
四、教学过程:
(一)引入:
物理课中,物体所做的功的计算方法:
(其中是与的夹角).
(二)新课讲解:
1.向量的夹角:
已知两个向量和(如图2),作,,则
()叫做向量与的夹角。
当时,与同向;
当时,与反向;
当时,与的夹角是,我们说与垂直,记作.
2.向量数量积的定义:
已知两个非零向量和,它们的夹角为,则数量叫做与的数量积(或内积),记作,即.
说明:①两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角
有关;
②实数与向量的积与向量数量积的本质区别:两个向量的数量积是一个数量;实
数与向量的积是一个向量;
③规定,零向量与任一向量的数量积是.
3.数量积的几何意义:
(1)投影的概念:
如图,,,过点作垂直于直线,垂足为,则.
叫做向量在方向上的投影,当为锐角时,它是正值;当为钝角时,它
是一负值;当时,它是;当时,它是;当时,它是.
(2)的几何意义:数量积等于的长度与在的方向上的投影
的乘积。
【练习】:①已知,,与的夹角,则;
②已知,在上的投影是,则 8 ;
③已知,,,则与的夹角.
(3)数量积的性质:
设、都是非零向量,是与的夹角,则
①;
②当与同向时,;当与反向时,;
特别地:或;
③;
④;
若是与方向相同的单位向量,则
⑤.
4.例题分析:
例1 已知正的边长为,设,,,求.
解:如图,与、与、与夹角为,
∴原式

例2 已知,,,且,求.
解:作,,
∵, ∴,
∵且,
∴中,, ∴,∴,,
所以,.
五、课后练习:
补充:1.若非零向量与满足,则 0 .
六、课堂小结:1.向量数量积的概念;
2.向量数量积的几何意义;
3.向量数量积的性质。
七、作业:
(图1)
(图2)
PAGE
- 3 -2.1. 向 量
一、课题:向量
二、教学目标:1.理解向量的概念,掌握向量的二要素(长度、方向);
2.能正确地表示向量,初步学会求向量的模长;
3.注意向量的特点:可以平行移动(长度、方向确定,起点不确定)。
三、教学重、难点:1.向量、相等向量、共线向量的概念;
2.向量的几何表示。
四、教学过程:
(一)问题引入:
老鼠由向西北方向逃窜,如果猫由向正东方向追赶,那么猫能否抓到老鼠?为什么?
(二)新课讲解:
1.向量定义:既有大小又有方向的量叫做向量。
2.向量的表示方法:(1)用有向线段表示;
(2)用字母表示:
说明:(1)具有方向的线段叫有向线段。有向线段的三要素:起点、方向和长度;
(2)向量的长度(或称模):线段的长度叫向量的长度,记作.
3.单位向量、零向量、平行向量、相等向量、共线向量的定义:
(1)单位向量:长度为1的向量叫单位向量,即;
(2)零向量:长度为零的向量叫零向量,记作;
(3)平行向量:方向相同或相反的非零向量叫平行向量,记作:;
(4)相等向量:长度相等,方向相同的向量叫相等向量。即:;
(5)共线向量:平行向量都可移到同一直线上。平行向量也叫共线向量。
说明:(1)规定:零向量与任一向量平行,记作;
(2)零向量与零向量相等,记作;
(3)任意二个非零相等向量可用同一条有向线段表示,与有向线段的起点无关。
4.例题分析:
例1 如图1,设是正六边形的中心,分别
写出图中与向量,,相等的向量。
解:;;

例2 如图2,梯形中,,分别是腰、
的三等分点,且,,求.
解:分别取,的中点分别记为,,
由梯形的中位线定理知:
∴ ∴.
例3 在直角坐标系中,已知,与轴正方向所成的角为,与轴正方向所成的角为,试作出.
解:
五、课堂练习:
六、课堂小结:1.正确理解向量的概念,并会用数学符号和有向线段表示向量;
2.明确向量的长度(模)、零向量、单位向量、平行向量、共线向量和相等
向量的意义。
七、作业:.
(图2)
(图1)
(起点)
(终点)
PAGE
- 2 -2.2.2 向量的减法
一、课题:向量的减法
二、教学目标:1.掌握向量减法及相反向量的的概念;
2.掌握向量减法与加法的逆运算关系,并能正确作出已知两向量的差向量;
3.能用向量运算解决一些具体问题。
三、教学重、难点:向量减法的定义。
四、教学过程:
(一)复习:1.向量的加法法则。
2.数的运算:减法是加法的逆运算。
(二)新课讲解:
1.相反向量:与长度相等,方向相反的向量,叫做的相反向量,记作。
说明:(1)规定:零向量的相反向量是零向量。
(2)性质:;.
2.向量的减法:求两个向量差的运算,叫做向量的减法。表示.
3.向量减法的法则:
已知如图有,,求作.
(1)三角形法则:在平面内任取一点,作,,则.
说明:可以表示为从的终点指向的终点的向量(,有共同起点).
(2)平行四边形:在平面内任取一点,作 ,,
则.
思考:若,怎样作出?
4.例题分析:
例1 试证:对任意向量,都有.
证明:(1)当,中有零向量时,显然成立。
(2)当,均不为零向量时:
①,,即时,当,同向时,;
当,异向时,.
②,不共线时,在中,,
则有.
∴其中:
当,同向时,,
当,同向时,.
例2 用向量方法证明:对角线互相平行的四边形是平行四边形。
已知:,,求证:四边形是平行四边形。
证明:设,,则,
∴,
∴,又∵点不在
∴平行且等于
所以,四边形是平行四边形.
五、课堂练习:
六、课堂小结:1.掌握向量减法概念并知道向量的减法的定义是建立在向量加法的基础
上的;
2.会作两向量的差向量;
3.能够结合图形进行向量计算以及用两个向量表示其它向量。
七、作业: 补充
1.已知正方形的边长等于1,,,,
求作向量:(1)(2);
2.已知向量,的模分别是3,4,求的取值范围。
3.如图,已知平行四边形的对角线,交于点,若,
,,求证.
PAGE
- 2 -