2022-2023学年人教版七年级数学下册第6章实数 单元综合练习题 (含解析)

文档属性

名称 2022-2023学年人教版七年级数学下册第6章实数 单元综合练习题 (含解析)
格式 docx
文件大小 111.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-03-13 15:06:21

图片预览

文档简介

2022-2023学年人教版七年级数学下册《第6章实数》单元综合练习题(附答案)
一、单项选择题
1.下面四个实数中,是无理数的为(  )
A.0 B. C.﹣2 D.
2.下列结论正确的是(  )
A.64的立方根是±4
B.﹣没有立方根
C.立方根等于本身的数是0
D.=﹣
3.下列说法中正确的是(  )
A.带根号的数都是无理数
B.无限小数都是无理数
C.无理数都是无限不循环小数
D.无理数是开方开不尽的数
4.对任意实数a,则下列等式一定成立的是(  )
A. B. C. D.
5.下列等式一定成立的是(  )
A.﹣= B.=±3 C.﹣=9 D.×=6
6.下列各数中,介于6和7之间的数是(  )
A. B. C. D.
7.若有意义,则x的取值范围是(  )
A.x≥1 B.x>1 C.x≤1 D.x<1
8.,﹣3,﹣π的大小顺序是(  )
A.﹣π<﹣3< B.﹣3<﹣π< C.<﹣3<﹣π D.﹣3<<﹣π
9.实数a在数轴上对应的点的位置如图所示,化简|a+3|的结果是(  )
A.a+3 B.a﹣3 C.﹣a+3 D.﹣a﹣3
10.若a、b均为正整数,且,则a+b的最小值是(  )
A.3 B.4 C.5 D.6
11.若a2=25,|b|=3,则a+b所有可能的值为(  )
A.8 B.8或2 C.8或﹣2 D.±8或±2
二、填空题
12.在0,3.14159,,,,,,,中,其中   是无理数,   是有理数.
13.的相反数是   ,绝对值是   .
14.的平方根是   ,﹣125的立方根是   .
15.比较下列各数的大小:
(1)   ;
(2)﹣3   ﹣.
16.已知,则   .
17.如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数是和﹣1,则点C所对应的实数是   .
三、解答题
18.计算:
(1)(+1)+﹣|1﹣|﹣22;
(2)﹣+﹣(﹣1)2022.
19.求下列各式中x的值:
(1)49x2=25
(2)3(x﹣2)2=9
20.一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值.
21.已知实数a、b分别是﹣1的整数和小数部分,求式子a2﹣|b+3|的值.
22.已知=4,且(y﹣z+1)2+=0,求的值.
23.如图所示,
(1)两个边长为1个单位长的正方形沿对角线剪开所得的四个三角形能拼成一个较大的正方形,设这个大的正方形的边长为x(x>0),则可得方程   ,解得x=   ,所以小正方形的对角线的长是   .
(2)正方形ABCO的点A表示数轴上的数1,由(1)可知OB的长是   ,以O为圆心OB为半径画弧交数轴于点D,则点D表示的数是多少.
参考答案
一、单项选择题
1.解:A、0是有理数,故选项错误;
B、是无理数,故选项正确;
C、﹣2是有理数,故选项错误;
D、是有理数,故选项错误.
故选:B.
2.解:A、64的立方根是4,故本选项错误;
B、﹣的立方根是﹣,故本选项错误;
C、立方根等于它本身的数是0、1、﹣1,故本选项错误;
D、=﹣3,﹣=﹣3,故本选项正确;
故选:D.
3.解:A、如=2,是整数,是有理数,选项错误;
B、无限循环小数是有理数,选项错误;
C、正确;
D、π是无理数,不是开方开不进得到的数,选项错误.
故选:C.
4.解:A、a为负数时,没有意义,故本选项错误;
B、a为正数时不成立,故本选项错误;
C、∵=|a|≠±a,故本选项错误.
D、本选项正确.
故选:D.
5.解:A、原式=3﹣2=1,故A不成立.
B、原式=3,故B不成立.
C、原式=﹣9,故C不成立,
D、原式=2×3=6,故D成立.
故选:D.
6.解:∵5<<6,6<7,7<<8,3<<4,
∴在6和7之间的数是,
故选:B.
7.解:由题意,得
x﹣1≥0,
解得x≥1,
故选:A.
8.解:∵,﹣3<0,﹣π<0,
∴最大,
又∵,
∴﹣3>﹣π,
∴,
∴B选项错误;C选项错误;D选项错误.
故选:A.
9.解:由数轴上a的位置可知,
∵﹣3<a<0,|a|<3,
∴a+3>0,
∴|a+3|=a+3.
故B,C,D错,A正确.
故选:A.
10.解:a、b均为正整数,且,
∴a的最小值是3,
b的值只能是:1,
则a+b的最小值4.
故选:B.
11.解:∵a2=25,|b|=3,
∴a=±5,b=±3,
a=5,b=3时,a+b=5+3=8,
a=5,b=﹣3时,a+b=5+(﹣3)=2,
a=﹣5,b=3时,a+b=﹣5+3=﹣2,
a=﹣5,b=﹣3时,a+b=﹣5+(﹣3)=﹣8,
综上所述,a+b所有可能的值为±8或±2.
故选:D.
二、填空题
12.解:,,,是无理数,
0,3.14159,﹣,,是有理数,
故答案为:,,,;0,3.14159,﹣,,.
13.解:2﹣的相反数是﹣2,
绝对值是﹣2.
故答案为:﹣2;﹣2.
14.解:因为=9,所以的平方根是±3;
﹣125的立方根是﹣5.
故答案为:±3,﹣5.
15.解:(1)∵>1,
∴>;
(2)∵,
∴.
故答案为:>,>.
16.解:∵,
∴====1.01;
故答案为:1.01.
17.解:设点C所对应的实数是x.
则有x﹣=﹣(﹣1),
解得x=2+1.
故答案是:2+1.
三、解答题
18.解:(1)原式=3++2﹣(﹣1)﹣4
=3++2﹣+1﹣4
=2;
(2)原式=﹣4+﹣1
=﹣+
=﹣.
19.解:(1)49x2=25,
x2=,
x=;
(2)3(x﹣2)2=9,
两边同除3得,(x﹣2)2=3
两边开平方得,x﹣2=±,
x﹣2=或x﹣2=﹣,
解得x=+2或x=2﹣.
20.解:∵一个正数的x的平方根是2a﹣3与5﹣a,
∴2a﹣3+5﹣a=0,
解得:a=﹣2,
∴x=(﹣7)2=49.
21.解:∵,
∴,
∴a=2,b=,

=4﹣.
22.解:∵=4,
∴z=4,
∵(y﹣z+1)2+=0,
∴y﹣z+1=0,x﹣17=0,
∴y=3,x=34,



=﹣5.
23.解:(1)由题意x2=2,
∵x>0,
∴x=,
∴这个正方形的对角线的长为2,
故答案为:x2=2,,2.
(2)OB==,
∵OD=OB=,
∴点D表示的数是.
故答案为:.