(共25张PPT)
18.2.1(1)矩形的性质
人教版八年级下册
教学目标
1.理解矩形的概念,知道矩形与平行四边形的区别与
联系.(重点)
2.会证明矩形的性质,会用矩形的性质解决简单的问
题.(重点、难点)
3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点)
新知导入
在推动平行四边形的变化过程中,你有没有发现一种熟悉的、更特殊的图形?
我们都知道三角形具有稳定性,平行四边形是否也具有稳定性?
新知讲解
一个角是
直角
两组对边
分别平行
平行
四边形
矩形
我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说也有特殊情况即特殊的平行四边形,这堂课我们就来研究一种特殊的平行四边形——
矩形.
知识点 1
矩形的定义
新知讲解
有一个角是直角的平行四边形是矩形.
矩形的定义:
平行四边形
矩形
有一个角
是直角
矩形是特殊的平行四边形
新知讲解
活动:
准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.
(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.
新知讲解
A
B
C
D
O
AB AD AC BD ∠BAD ∠ADC ∠AOD ∠AOB
橡皮擦
课本
桌子
物体
测量
(实物)
(形象图)
(2)根据测量的结果,你有什么猜想?
猜想1 矩形的四个角都是直角.
猜想2 矩形的对角线相等.
你能证明吗?
新知讲解
证明:∵四边形ABCD是矩形,
∴∠B=∠D,∠C=∠A, AB∥DC.
∴∠B+∠C=180°.
又∵∠B = 90°,
∴∠C = 90°.
∴∠B=∠C=∠D=∠A =90°.
如图,四边形ABCD是矩形,∠B=90°.
求证: ∠B=∠C=∠D=∠A=90°.
A
B
C
D
证一证
新知讲解
证明:∵四边形ABCD是矩形,
∴AB=DC,∠ABC=∠DCB=90°,
在△ABC和△DCB中,
∵AB=DC,∠ABC=∠DCB,BC= CB,
∴△ABC≌△DCB.
∴AC=DB.
A
B
C
D
O
如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相交于点O.
求证:AC=DB.
典例讲解
例1 如图,在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4 ,求矩形对角线的长.
解:∵四边形ABCD是矩形.
∴AC = BD,
OA= OC= AC,OB = OD = BD ,
∴OA = OB.
又∵∠AOB=60°,
∴△OAB是等边三角形,
∴OA=AB=4,
∴AC=BD=2OA=8.
A
B
C
D
O
矩形的对角线相等且互相平分
典例讲解
例2 如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F.求证:DF=DC.
A
B
C
D
E
F
证明:连接DE.
∵AD =AE,∴∠AED =∠ADE.
∵四边形ABCD是矩形,
∴AD∥BC,∠C=90°.
∴∠ADE=∠DEC,
∴∠DEC=∠AED.
又∵DF⊥AE,
∴DF=DC.
典例讲解
例3 如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
解:∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠2=∠3.
又由折叠知∠1=∠2,
∴∠1=∠3,∴BE=DE.
设BE=DE=x,则AE=8-x.
∵在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x)2=x2,
解得x=5,即DE=5.
∴S△BED= DE·AB= ×5×4=10.
矩形的折叠问题常与勾股定理结合考查
典例讲解
思考 请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形 如果是,那么对称轴有几条
矩形的性质:
对称性: .
对称轴: .
轴对称图形
2条
巩固练习
1.如图,在矩形ABCD中,对角线AC,BD交于点O,
下列说法错误的是 ( )
A.AB∥DC B.AC=BD
C.AC⊥BD D.OA=OB
A
B
C
D
O
C
巩固练习
2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________.
巩固练习
3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.
解:∵四边形ABCD是矩形,
∴∠DAB=90°,
AO= AC,BO= BD,AC=BD,
∴∠BAE+∠DAE=90°,AO=BO.
又∵∠DAE:∠BAE=3:1,
∴∠BAE=22.5°,∠DAE=67.5°.
∵AE⊥BD,
∴∠ABE=90°-∠BAE=90°-22.5°=67.5°,
∴∠OAB=∠ABE=67.5°
∴∠EAO=67.5°-22.5°=45°.
新知讲解
直角三角形斜边上的中线的性质
二
A
B
C
D
O
活动:如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半.
B
C
O
A
问题 Rt△ABC中,BO是一条怎样的线段?
它的长度与斜边AC有什么关系?
猜想:直角三角形斜边上的中线等于斜边的一半.
试给出数学证明.
新知讲解
O
C
B
A
D
证明: 延长BO至D, 使OD=BO, 连接AD、DC.
∵AO=OC, BO=OD,
∴四边形ABCD是平行四边形.
∵∠ABC=90°,
∴平行四边形ABCD是矩形,
∴AC=BD,
如图,在Rt△ABC中,∠ABC=90°,BO是AC上的中线.求证: BO = AC .
∴BO= BD= AC.
1. 直角三角形斜边上的中线等于斜边的一半.
性质
证一证
典例讲解
例4 如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.
(1)若AB=10,AC=8,求四边形AEDF的周长;
解:∵AD是△ABC的高,E、F分别是AB、AC的中点,
∴DE=AE= AB= ×10=5,
DF=AF= AC= ×8=4,
∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18 .
典例讲解
(2)求证:EF垂直平分AD.
证明:∵DE=AE,DF=AF,
∴E、F在线段AD的垂直平分线上,
∴EF垂直平分AD.
当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.
归纳
课堂总结
矩形的相关概念及性质
具有平行四边形的一切性质
四个内角都是直角,
两条对角线互相平分且相等
轴对称图形
有两条对称轴
直角三角形斜边上的中线等于斜边的一半
有一个角是直角的平行四边形叫做矩形
拓展提升
1、 如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE.
解:连接EG,DG.
∵BD,CE是△ABC的高,
∴∠BDC=∠BEC=90°.
∵点G是BC的中点,
∴EG= BC,DG= BC.
∴EG=DG.
又∵点F是DE的中点,
∴GF⊥DE.
在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.
归纳
拓展提升
2、如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.
解:连接OP.
∵四边形ABCD是矩形,
∴∠DAB=90°,OA=OD=OC=OB,
∴S△AOD=S△DOC=S△AOB=S△BOC
= S矩形ABCD= ×6×8=12.
在Rt△BAD中,由勾股定理得BD=10,
∴AO=OD=5,
∵S△APO+S△DPO=S△AOD,
∴ AO·PE+ DO·PF=12,即5PE+5PF=24,
∴PE+PF= .
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin