中考数学最值问题方法探究“胡不归”问题
如图 1-1-1 所示,已知 sin∠MBN=k,点 P 为角∠MBN 其中一边 BM 上的一个动点,点 A 在射线 BM、BN 的同侧,连接 AP,则当“PA+k·PB”的值最小时,P 点的位置如何确定
分析:本题的关键在于如何确定“k·PB”的大小,过点 P 作 PQ⊥BN 垂足为Q,则 k·PB=PB·sin∠MBN=PQ,
∴本题求“PA+k·PB”的最小值转化为求“PA+PQ”的最小值(如图 1-1-2), 即 A、P、Q 三点共线时最小(如图 1-1-3),本题得解。
图 1-1-1 图 1-1-2 图 1-1-3
点 P 在直线上运动 →“胡不归”问题
【数学故事】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径 A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归? 胡不归?…何以归”。这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。
例题讲解:
如图,已知抛物线(为常数,且)与轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D.
(1)若点D的横坐标为-5,求抛物线的函数表达式;
(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少.
【分析】(1)根据点在曲线上点的坐标满足方程的关系,依次求出的值得到直线的解析式、点D的纵坐标、的值得到抛物线的函数表达式;
(2)分△PAB∽△ABC和△PAB∽△BAC两种情况讨论即可;
(3)过点D作DH⊥y轴于点H,过点A作AG⊥DH于点G,交BD于点F,则点F即为所求,理由是,由于点M在线段AF上以每秒1个单位的速度运动,在线段FD上以每秒2个单位的速度运动,从而根据直线BD的倾斜角是30°知道,又根据垂直线段最短的性质知点F即为所求,从而根据含30°直角三角形的性质求解即可.
【解析】解:(1)∵抛物线(为常数,且)与轴从左至右依次交于A,B两点,
∵BM=9,AB=6,∴BF=,BD=,AF=
∴A(-2,0),B(4,0)
∵点B在直线上,∴,即
∴直线的解析式为
∵点D在直线上,且横坐标为-5,∴纵坐标为
∵点D在抛物线上,∴,解得
∴抛物线的函数表达式为
(2)易得,点C的坐标为,则
设点P的坐标为,
分两种情况:
①若△PAB∽△ABC,则∠PAB=∠ABC,
∴由∠PAB=∠ABC 得,即
∴,解得
此时点P的坐标为,,
∴由得,解得
②若△PAB∽△BAC,则∠PAB=∠BAC,
∴由∠PAB=∠BAC 得,即
∴,解得
此时点P的坐标为,,
∴由得,解得
(3)如图,过点D作DH⊥y轴于点H,过点A作AG⊥DH于点G,交BD于点F,则点F即为所求
∵直线BD的解析式为,∴∠FBA=∠FGD=30°
∵AB=6,∴AF=
∴点F的坐标为
【点睛】本题考查单动点问题;二次函数和一次函数交点问题;曲线上点的坐标与方程的关系;勾股定理;相似三角形的判定;垂直线段最短的性质;分类思想和数形结合思想的应用.
同步训练:
一、填空题
1.如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 _____.
2.如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为__________.
3.如图,在△ACE中,CA=CE,∠CAE=30°,半径为5的⊙O经过点C,CE是圆O的切线,且圆的直径AB在线段AE上,设点D是线段AC上任意一点(不含端点),则ODCD的最小值为 _____.
4.如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则PC+PB的最小值为___.
5.如图,在边长为4的正方形ABCD内有一动点P,且BP=.连接CP,将线段PC绕点P逆时针旋转90°得到线段PQ.连接CQ、DQ,则DQ+CQ的最小值为 ___.
二、解答题
6.在平面直角坐标系,,直线经过,点在直线上运动,求最小值.
7.如图,在平面直角坐标系中,直线分别与x,y轴交于点A,B,抛物线恰好经过这两点.
(1)求此抛物线的解析式;
(2)若点C的坐标是,将绕着点C逆时针旋转90°得到,点A的对应点是点E.
①写出点E的坐标,并判断点E是否在此抛物线上;
②若点P是y轴上的任一点,求取最小值时,点P的坐标.
8.如图1,抛物线与x轴交于点,与y轴交于点B,在x轴上有一动点(),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.
(1)求a的值和直线AB的函数表达式:
(2)设△PMN的周长为,△AEN的周长为,若求m的值.
(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到,旋转角为(),连接、,求的最小值.
9.如图,在平面直角坐标系中,直线l1:y=x+和直线l2:y=﹣x+b相交于y轴上的点B,且分别交x轴于点A和点C.
(1)求△ABC的面积;
(2)点E坐标为(5,0),点F为直线l1上一个动点,点P为y轴上一个动点,求当EF+CF最小时,点F的坐标,并求出此时PF+OP的最小值.
10.如图,矩形的顶点、分别在、轴的正半轴上,点的坐标为,一次函数的图象与边、、轴分别交于点、、,,并且满足,点是线段上的一个动点.
(1)求的值;
(2)连接,若的面积与四边形的面积之比为,求点的坐标;
(3)求的最小值.
11.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,),C(2,0),其对称轴与x轴交于点D.
(1)求二次函数的表达式及其顶点坐标;
(2)点M为抛物线的对称轴上的一个动点,若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,求点M的坐标;
(3)若P为y轴上的一个动点,连接PD,求PB+PD的最小值.
12.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连接BC,且tan∠CBD,如图所示.
(1)求抛物线的解析式;
(2)设P是抛物线的对称轴上的一个动点.
①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连接FB、FC,求△BCF的面积的最大值;
②连接PB,求PC+PB的最小值.
13.在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为5.
(1)求抛物线和一次函数的解析式;
(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;
(3)若点为轴上任意一点,在(2)的结论下,求的最小值.
14.已知抛物线过点,两点,与y轴交于点C,.
(1)求抛物线的解析式及顶点D的坐标;
(2)过点A作,垂足为M,求证:四边形ADBM为正方形;
(3)点P为抛物线在直线BC下方图形上的一动点,当面积最大时,求点P的坐标;
(4)若点Q为线段OC上的一动点,问:是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
参考答案:
1.4
【分析】在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,此时PA+2PB=2==2BF,通过解直角三角形ABF,进一步求得结果.
【解析】解:如图,
在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,
此时PA+2PB最小,
∴∠AFB=90°
∵AB=AC,AD⊥BC,
∴∠CAD=∠BAD=,
∴∠EAD=∠CAE+∠CAD=30°,
∴PF=,
∴PA+2PB=2==2BF,
在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,
∴BF=AB sin45°=4,
∴(PA+2PB)最大=2BF=,
故答案为:.
【点睛】本题考查了等腰三角形的性质,解直角直角三角形,解题的关键是作辅助线.
2.6
【分析】先求出点A,点B坐标,由勾股定理可求AB的长,作点B关于OA的对称点,可证是等边三角形,由直角三角形的性质可得CH=AC,则,即当点,点C,点H三点共线时,有最小值,即2BC+AC有最小值,由直角三角形的性质可求解.
【解析】解:∵一次函数分别交x轴、y轴于A、B两点,
∴点A(3,0),点,
∴AO=3,,
∴,
作点B关于OA的对称点,连接 ,,过点C作CH⊥AB于H,如图所示:
∴,
∴,
∴,
∴是等边三角形,
∵,
∴,
∵CH⊥AB,
∴,
∴,
∴当点,点C,点H三点共线时,有最小值,即2BC+AC有最小值,
此时,,是等边三角形,
∴,,
∴,
∴2BC+AC的最小值为6.
故答案为:6.
【点睛】本题是胡不归问题,考查了一次函数的性质,等边三角形的判定和性质,直角三角形的性质,确定点C的位置是解题的关键.
3.
【分析】作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,易证四边形AOCF是菱形,根据对称性可得DF=DO.过点D作DH⊥OC于H,易得DH=DC,从而有CD+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,然后在Rt△OHF中运用三角函数即可解决问题.
【解析】解:作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图所示,
∵OA=OC,
∴∠OCA=∠OAC=30°,
∴∠COB=60°,
则∠AOF=∠COF=∠AOC=(180°-60°)=60°.
∵OA=OF=OC,
∴△AOF、△COF是等边三角形,
∴AF=AO=OC=FC,
∴四边形AOCF是菱形,
∴根据对称性可得DF=DO.
过点D作DH⊥OC于H,则DH =DC,
∴CD+OD=DH+FD.
根据两点之间线段最短可得,
当F、D、H三点共线时,DH+FD(即CD+OD)最小,
∵OF=OA=5,
∴,
∴
即CD+OD的最小值为.
故答案为:.
【点睛】本题主要考查了圆半径相等的性质,等边三角形的判定与性质、菱形的判定与性质、两点之间线段最短、等腰三角形的性质、含30度角的直角三角形的性质,勾股定理等知识,把CD+OD转化为DH+FD是解题的关键.
4.4
【解析】思路引领:过P作PD⊥AB于D,依据△AOB是等腰直角三角形,可得∠BAO=∠ABO=45°=∠BPD,进而得到△BDP是等腰直角三角形,故PDPB,当C,P,D在同一直线上时,CD⊥AB,PC+PD的最小值等于垂线段CD的长,求得CD的长,即可得出结论.
答案解析:如图所示,过P作PD⊥AB于D,
∵直线y=x﹣3分别交x轴、y轴于B、A两点,
令x=0,则y=﹣3;令y=0,则x=3,
∴A(0,﹣3),B(3,0),
∴AO=BO=3,
又∵∠AOB=90°,
∴△AOB是等腰直角三角形,
∴∠BAO=∠ABO=45°=∠BPD,
∴△BDP是等腰直角三角形,
∴PDPB,
∴PC+PB(PCPB)(PC+PD),
当C,P,D在同一直线上,即CD⊥AB时,PC+PD的值最小,最小值等于垂线段CD的长,
此时,△ACD是等腰直角三角形,
又∵点C(0,1)在y轴上,
∴AC=1+3=4,
∴CDAC=2,
即PC+PD的最小值为,
∴PC+PB的最小值为4,
故答案为:4.
5.5
【分析】连接AC、AQ,先证明△BCP∽△ACQ得即AQ=2,在AD上取AE=1,证明△QAE∽△DAQ得EQ=QD,故DQ+CQ=EQ+CQ≥CE,求出CE即可.
【解析】解:如图,连接AC、AQ,
∵四边形ABCD是正方形,PC绕点P逆时针旋转90°得到线段PQ,
∴∠ACB=∠PCQ=45°,
∴∠BCP=∠ACQ,cos∠ACB=,cos∠PCQ=,
∴∠ACB=∠PCO,
∴△BCP∽△ACQ,
∴
∵BP=,
∴AQ=2,
∴Q在以A为圆心,AQ为半径的圆上,
在AD上取AE=1,
∵,,∠QAE=∠DAQ,
∴△QAE∽△DAQ,
∴即EQ=QD,
∴DQ+CQ=EQ+CQ≥CE,
连接CE,
∴,
∴DQ+CQ的最小值为5.
故答案为:5.
【点睛】本题主要考查了正方形的性质,旋转的性质,相似三角形的性质与判定,三角函数,解题的关键在于能够连接AC、AQ,证明两对相似三角形求解.
6.
【分析】先求出点坐标;过点作轴的垂线与轴交于点,点作轴的平行线,过点作该平行线的垂线,两条线相交于点,与直线的交点为;直线与轴的交点,,,则可求,则,,求出的长即可.
【解析】解:经过,
,
,
,
过点作轴的垂线与轴交于点,点作轴的平行线,过点作该平行线的垂线,两条线相交于点,与直线的交点为;
直线与轴的交点,,
,
,
,
,
,
,
当、、三点共线时,值最小,
,
,
值最小为.
【点睛】本题考查一次函数的图像及性质,点到直线垂线段最短;能够利用三角形函数将转化为长是解题的关键.
7.(1)
(2)①点E在抛物线上;②P(0, )
【分析】(1)先求出A、B坐标,然后根据待定系数法求解即可;
(2)①根据旋转的性质求出EF=AO=3,CF=CO=6,从而可求E的坐标,然后把E的坐标代入(1)的函数解析式中,从而判断出点E是否在抛物线上;
②过点E作EH⊥AB,交y轴于P,垂足为H,,则,得,可知HP+PE的最小值为EH的长,从而解决问题.
【解析】(1)解:当x=0时,y=-4,
当y=0时,,
∴x=-3,
∴A(-3,0),B(0,-4),
把A、B代入抛物线,
得,
∴,
∴抛物线解析式为.
(2)解:①∵A(-3,0),C(0,6),
∴AO=3,CO=6,
由旋转知:EF=AO=3,CF=CO=6,∠FCO=90°
∴E到x轴的距离为6-3=3,
∴点E的坐标为(6,3),
当x=3时,,
∴点E在抛物线上;
②过点E作EH⊥AB,交y轴于P,垂足为H,
∵A( 3,0),B(0, 4),
∴OA=3,OB=4,
∴AB=5,
∵,
∴,
∴,
∴HP+PE的最小值为EH的长,
作EG⊥y轴于G,
∵∠GEP=∠ABO,
∴tan∠GEP=tan∠ABO,
∴,
∴,
∴,
∴OP= 3=,
∴P(0, ).
【点睛】本题是二次函数综合题,主要考查了待定系数法求函数解析式,旋转的性质,三角函数,两点之间、线段最短等知识,利用三角函数将转化为HP的长是解题的关键.
8.(1)a=-.直线AB解析式为y=-x+3;
(2)2
(3)
【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;
(2)由△PNM∽△ANE,推出,列出方程即可解决问题;
(3)在y轴上 取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.
【解析】(1)令y=0,则ax2+(a+3)x+3=0,
∴(x+1)(ax+3)=0,
∴x=-1或-,
∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),
∴-=4,
∴a=-.
∵A(4,0),B(0,3),
设直线AB解析式为y=kx+b,则,
解得,
∴直线AB解析式为y=-x+3;
(2)如图1,
∵PM⊥AB,PE⊥OA,
∴∠PMN=∠AEN,
∵∠PNM=∠ANE,
∴△PNM∽△ANE,
∵
∴,
∵NE∥OB,
∴,
∴,
∵抛物线解析式为,
∴,
∴,
解得m=2或4,
经检验x=4是分式方程的增根,
∴m=2;
(3)如图2,在y轴上 取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.
∵OE′=2,OM′ OB=,
∴OE′2=OM′ OB,
∴,
∵∠BOE′=∠M′OE′,
∴△M′OE′∽△E′OB,
∴,
∴,
∴,此时最小(两点间线段最短,A、M′、E′共线时),
最小值.
【点睛】本题为二次函数综合题,主要考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是的最小值.
9.(1)S△ABC=;(2)点F坐标为(1,);PF+OP的最小值为.
【分析】(1)根据l1的解析式可得A、B坐标,把点B坐标代入y=﹣x+b可求出b值,进而可得出点C坐标,即可求出AC、OB的长,利用三角形面积公式即可得答案;
(2)如图,作点C关于直线l1的对称点C′,连接C′E,交l1于F,根据A、B、C坐标可得△ABC是直角三角形,可得点C′在直线l2上,根据两点间距离公式可得出C′坐标,可得C′E为EF+CF的最小值,利用待定系数法可得出直线C′E的解析式,联立直线C′E与l1解析式即可得出得F的坐标;作二、四象限对角线l3,过点F作FG⊥l3于G,交y轴于P,可得∠GOP=45°,可得PG=,可得FG为PF+OP的最小值,过点F作FQ⊥x轴,交l3于Q,可得△FGQ为等腰直角三角形,可得FG=FQ,由l3的解析式为y=-x及点F的坐标可得点Q坐标,进而可得FQ的长,即可得FG的长,可得答案.
【解析】(1)∵l1:y=x+,
∴当x=0时,y=,当y=0时,x=-3,
∴A(-3,0),B(0,),
∵点B直线l2:y=﹣x+b上,
∴b=,
∴直线l2的解析式为y=﹣x+,
∴当y=0时,x=1,
∴C(1,0),
∴AC=4,OB=,
∴S△ABC===.
(2)如图,作点C关于直线l1的对称点C′,连接C′E,交l1于F,
∵A(-3,0),B(0,),C(1,0),
∴AB2=(-3)2+()2=12,BC2=12+()2=4,AC2=42=16,
∵AC2=AB2+BC2,
∴△ABC是直角三角形,
∴点C′在直线l2上,
∵点C与点C′关于直线l1的对称,
∴CC′=2BC=4,
设点C′(m,﹣m+,)
∴(m-1)2+(﹣m+)2=42,
解得:m1=-1,m2=3,
∵点C′在第二象限,
∴m=-1,
∴﹣m+=,
∵FC=FC′,
∴EF+CF=EF+FC′,
∴当C′、F、E三点共线时EF+CF的值最小,
设直线C′E的解析式为y=kx+b,
∴,
解得:,
∴直线C′E的解析式为,
联立直线C′E与l1解析式得,
解得:,
∴F(1,).
如图,作二、四象限对角线l3,过点F作FG⊥l3于G,交y轴于P,过点F作FQ⊥x轴,交l3于Q,
∴直线l3的解析式为y=-x,∠GOP=45°,
∴△GOP是等腰直角三角形,
∴PG=OP,
∴G、P、F三点共线时,PF+OP的值最小,最小值为FG的长,
∵∠GOP=45°,∠POE=90°,
∴∠EOQ=45°,
∴∠FQO=45°,
∴△FGQ是等腰直角三角形,
∴FG=FQ,
∵F(1,),直线l3的解析式为y=-x,
∴Q(1,-1),
∴FQ=-(-1)=+1,
∴FG=FQ=×(+1)=,
∴PF+OP的最小值为.
【点睛】本题考查一次函数的综合、轴对称的性质、等腰直角三角形的判定与性质,正确添加辅助线,熟练掌握待定系数法求一次函数解析式及轴对称的性质是解题关键.
10.(1);(2);(3)
【分析】(1)利用矩形的性质,用表示点的坐标,再利用待定系数法即可求解;
(2)首先求出四边形的面积,再根据条件求出的面积,即可解决问题;
(3)过点作轴交于点,则,即可转化为求的最小值,作点关于一次函数的对称点,过点作轴的垂线交轴于点,交一次函数于点,即的最小值为,算出长度即可.
【解析】(1)在中,令,则,
点的坐标为,
,,
,
把代入中得:,
解得:;
(2)由(1)得一次函数为,,,
,,,
,
的面积与四边形的面积之比为,
的面积与四边形的面积之比为,
,
设点的横坐标为,则,
解得:,
把代入中得:,
;
(3)
如图所示,过点作轴交于点,
,
,
,
作点关于一次函数的对称点,且OO’与直线DF交于Q点,过点作轴的垂线交轴于点,
,
,
当、、在同一直线时最小,
即的最小值为,
,
,,,
在中,,
,
在中.,
的最小值为.
【点睛】本题考查几何图形与函数的综合题,包括一次函数、矩形的性质、四边形的面积,解直角三角形以及胡不归问题,属于中考压轴题.
11.(1)y=(x)2,(,);(2)(,)或(,)或(,)或(,)或(,);(3)
【解析】思路引领:(1)将A、B、C三点的坐标代入y=ax2+bx+c,利用待定系数法即可求出二次函数的表达式,进而得到其顶点坐标;
(2)当以A,B,M,N为顶点的四边形为菱形时,分三种情况:①以A为圆心AB为半径画弧与对称轴有两个交点,此时AM=AB;②以B为圆心AB为半径画弧与对称轴有两个交点,此时BM=AB;③线段AB的垂直平分线与对称轴有一个交点,此时AM=BM,分别列出方程,求解即可;
(3)连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.最小值就是线段DH,求出DH即可.
答案解析:(1)由题意,解得 ,
∴抛物线解析式为yx2x,
∵yx2x(x)2,
∴顶点坐标(,);
(2)设点M的坐标为(,y).
∵A(﹣1,0),B(0,),
∴AB2=1+3=4.
①以A为圆心AB为半径画弧与对称轴有两个交点,此时AM=AB,
则(1)2+y2=4,解得y=±,
即此时点M的坐标为(,)或(,);
②以B为圆心AB为半径画弧与对称轴有两个交点,此时BM=AB,
则()2+(y)2=4,解得y或y,
即此时点M的坐标为(,)或(,);
③线段AB的垂直平分线与对称轴有一个交点,此时AM=BM,
则(1)2+y2=()2+(y)2,解得y,
即此时点M的坐标为(,).
综上所述,满足条件的点M的坐标为(,)或(,)或(,)或(,)或(,);
(3)如图,连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.
理由:∵OA=1,OB,
∴tan∠ABO,
∴∠ABO=30°,
∴PHPB,
∴PB+PD=PH+PD=DH,
∴此时PB+PD最短(垂线段最短).
在Rt△ADH中,∵∠AHD=90°,AD,∠HAD=60°,
∴sin60°,
∴DH,
∴PB+PD的最小值为.
12.(1);(2)①;②
【解析】思路引领:(1)设抛物线的解析式为:y=a(x+1)(x﹣5),可得对称轴为直线x=2,由锐角三角函数可求点C坐标,代入解析式可求解析式;
(2)①先求出直线BC解析式,设P(2,t),可得点E(5t,t),点,可求EF的长,由三角形面积公式和二次函数性质可求解;
②根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,过点P作PG⊥AC于G,可得PGPC,可得,过点B作BH⊥AC于点H,则PG+PB≥BH,即BH是PC+PB的最小值,由三角形面积公式可求解.
答案解析:(1)根据题意,可设抛物线的解析式为:y=a(x+1)(x﹣5),
∵抛物线的对称轴为直线x=2,
∴D(2,0),
又∵,
∴CD=BD tan∠CBD=4,
即C(2,4),
代入抛物线的解析式,得4=a(2+1)(2﹣5),
解得 ,
∴二次函数的解析式为 x2;
(2)①设P(2,t),其中0<t<4,
设直线BC的解析式为 y=kx+b,
∴,
解得
即直线BC的解析式为 ,
令y=t,得:,
∴点E(5t,t),
把 代入,得 ,
即,
∴,
∴△BCF的面积EF×BD(t),
∴当t=2时,△BCF的面积最大,且最大值为;
②如图,据图形的对称性可知∠ACD=∠BCD,AC=BC=5,
∴,
过点P作PG⊥AC于G,则在Rt△PCG中,,
∴,
过点B作BH⊥AC于点H,则PG+PB≥BH,
∴线段BH的长就是的最小值,
∵,
又∵,
∴,
即,
∴的最小值为.
13.(1);;(2)的面积最大值是,此时点坐标为;(3)的最小值是3.
【分析】(1)先写出平移后的抛物线解析式,再把点代入可求得的值,由的面积为5可求出点的纵坐标,代入抛物线解析式可求出横坐标,由、的坐标可利用待定系数法求出一次函数解析式;
(2)作轴交于,如图,利用三角形面积公式,由构建关于E点横坐标的二次函数,然后利用二次函数的性质即可解决问题;
(3)作关于轴的对称点,过点作于点,交轴于点,则,利用锐角三角函数的定义可得出,此时最小,求出最小值即可.
【解析】解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,
∵,∴点的坐标为,
代入抛物线的解析式得,,∴,
∴抛物线的解析式为,即.
令,解得,,∴,
∴,
∵的面积为5,∴,∴,
代入抛物线解析式得,,解得,,∴,
设直线的解析式为,
∴,解得:,
∴直线的解析式为.
(2)过点作轴交于,如图,设,则,
∴,
∴,,
∴当时,的面积有最大值,最大值是,此时点坐标为.
(3)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,
∵,,
∴,,∴,
∵,
∴,∴,
∵、关于轴对称,∴,
∴,此时最小,
∵,,
∴,
∴.
∴的最小值是3.
【点睛】主要考查了二次函数的平移和待定系数法求函数的解析式、二次函数的性质、相似三角形的判定与性质、锐角三角函数的有关计算和利用对称的性质求最值问题.解(1)题的关键是熟练掌握待定系数法和相关点的坐标的求解;解(2)题的关键是灵活应用二次函数的性质求解;解(3)题的关键是作关于轴的对称点,灵活应用对称的性质和锐角三角函数的知识,学会利用数形结合的思想和转化的数学思想把求的最小值转化为求的长度.
14.(1)抛物线的表达式为:,顶点;(2)证明见解析;(3)点;(4)存在,的最小值为.
【分析】(1)设交点式,利用待定系数法进行求解即可;
(2)先证明四边形ADBM为菱形,再根据有一个角是直角的菱形是正方形即可得证;
(3)先求出直线BC的解析式,过点P作y轴的平行线交BC于点N,设点,则点N,根据可得关于x的二次函数,继而根据二次函数的性质进行求解即可;
(4)存在,如图,过点C作与y轴夹角为的直线CF交x轴于点F,过点A作,垂足为H,交y轴于点Q,此时,则最小值,求出直线HC、AH的解析式即可求得H点坐标,进行求得AH的长即可得答案.
【解析】解:(1)函数的表达式为:,
即:,解得:,
故抛物线的表达式为:,
则顶点;
(2),,
∵A(1,0),B(3,0),∴OB=3,OA=1,
∴AB=2,
∴,
又∵D(2,-1),
∴AD=BD=,
∴AM=MB=AD=BD,
∴四边形ADBM为菱形,
又∵,
菱形ADBM为正方形;
(3)设直线BC的解析式为y=mx+n,
将点B、C的坐标代入得:,
解得:,
所以直线BC的表达式为:y=-x+3,
过点P作y轴的平行线交BC于点N,
设点,则点N,
则,
,故有最大值,此时,
故点;
(4)存在,理由:
如图,过点C作与y轴夹角为的直线CF交x轴于点F,过点A作,垂足为H,交y轴于点Q,
此时,
则最小值,
在Rt△COF中,∠COF=90°,∠FOC=30°,OC=3,tan∠FCO=,
∴OF=,
∴F(-,0),
利用待定系数法可求得直线HC的表达式为:…①,
∵∠COF=90°,∠FOC=30°,
∴∠CFO=90°-30°=60°,
∵∠AHF=90°,
∴∠FAH=90°-60°=30°,
∴OQ=AO tan∠FAQ=,
∴Q(0,),
利用待定系数法可求得直线AH的表达式为:…②,
联立①②并解得:,
故点,而点,
则,
即的最小值为.
【点睛】本题考查了二次函数的综合题,涉及了待定系数法,解直角三角形的应用,正方形的判定,最值问题等,综合性较强,有一定的难度,正确把握相关知识,会添加常用辅助线是解题的关键.