人教A版2019 选择性必修第三册 6-1分类加法计数原理与分步乘法计数原理(含解析)

文档属性

名称 人教A版2019 选择性必修第三册 6-1分类加法计数原理与分步乘法计数原理(含解析)
格式 zip
文件大小 852.9KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-03-14 21:21:20

文档简介

6.1分类加法计数原理与分步乘法计数原理
一、单选题
1.现有5幅不同的油画,2幅不同的国画,7幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有( )
A.7种 B.9种 C.14种 D.70种
2.某大学食堂备有6种荤菜、5种素菜、3种汤,现要配成一荤一素一汤的套餐,则可以配成不同套餐的种数为( )
A.30 B.14 C.33 D.90
3.用数字1,2,3,4,5,6组成无重复数字的三位数,然后由小到大排成一个数列,这个数列的项数为( ).
A.24 B.46 C.48 D.120
4.某一数学问题可用综合法和分析法两种方法证明,有6名同学只会用综合法证明,有4名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种树为( ).
A.10 B.16 C.20 D.24
5.如图,要给①、②、③、④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方案种数为( ).
A.180 B.160 C.96 D.60
6.已知集合,,若从这两个集合中各取一个元素作为点的横坐标或纵坐标,则可得平面直角坐标系中第一、二象限内不同点的个数是( )
A.18 B.16 C.14 D.10
7.核糖核酸RNA是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体.参与形成RNA的碱基有4种,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,假设某一RNA分子由100个碱基组成,则不同的RNA分子的种数为( )
A. B. C. D.
8.在某种信息传输过程中,用4个数字的一个排列(允许数字重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )
A.10 B.11 C.12 D.7
9.如图,将钢琴上的个键依次记为,,…,.设,若且,则称,,为大三和弦;若且,则称,,为小三和弦.用这个键可以构成的大三和弦与小三和弦的个数之和为( )
A.5 B.8 C.10 D.15
10.某日,甲、乙、丙三个单位被系统随机预约到A,B,C三家医院接种疫苗且每个单位只能被随机预约到一家医院,每家医院每日至多接待两个单位.已知A医院接种的是只需要打一针的腺病毒载体疫苗,B医院接种的是需要打两针的灭活疫苗,C医院接种的是需要打三针的重组蛋白疫苗,则甲单位不接种需要打三针的重组蛋白疫苗的预约方案种数为( )
A.27 B.24 C.18 D.16
11.几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝A,B,C;(2)乙在下落的过程中依次撞击到树枝D,E,F;(3)丙在下落的过程中依次撞击到树枝G,A,C;(4)丁在下落的过程中依次撞击到树枝B,D,H;(5)戊在下落的过程中依次撞击到树枝I,C,E,则这九棵树枝从高到低不同的顺序共有( )
A.23 B.24 C.32 D.33
12.空间中不共面的4点A,B,C,D,若其中3点到平面的距离相等且为第四个点到平面的倍,这样的平面的个数为( )
A.8 B.16 C.32 D.48
二、多选题
13.现有不同的红球4个,黄球5个,绿球6个,则下列说法正确的是( )
A.从中选出2个球,正好一红一黄,有9种不同的选法
B.若每种颜色选出1个球,有120种不同的选法
C.若要选出不同颜色的2个球,有31种不同的选法
D.若要不放回地依次选出2个球,有210种不同的选法
14.某学校高一年级数学课外活动小组中有男生7人,女生3人,则下列说法正确的是( )
A.从中选2人,1人做正组长,1人做副组长,共有100种不同的选法
B.从中选2人参加数学竞赛,其中男、女生各1人,共有21种不同的选法
C.从中选1人参加数学竞赛,共有10种不同的选法
D.若报名参加学校的足球队、羽毛球队,每人限报其中的1个队,共有100种不同的报名方法
15.某校实行选课走班制度,张毅同学选择的是地理、生物、政治这三科,且生物在B层,该校周一上午选课走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则下列说法正确的是( )
第1节 第2节 第3节 第4节
地理1班 化学A层3班 地理2班 化学A层4班
生物A层1班 化学B层2班 生物B层2班 历史B层1班
物理A层1班 生物A层3班 物理A层2班 生物A层4班
物理B层2班 生物B层1班 物理B层1班 物理A层4班
政治1班 物理A层3班 政治2班 政治3班
A.此人有4种选课方式 B.此人有5种选课方式
C.自习不可能安排在第2节 D.自习可安排在4节课中的任一节
16.已知数字,由它们组成四位数,下列说法正确的有( )
A.组成可以有重复数字的四位数有个
B.组成无重复数字的四位数有96个
C.组成无重复数字的四位偶数有66个
D.组成无重复数字的四位奇数有28个
三、填空题
17.从地到地要经过地,已知从地到地有三条路,从地到地有四条路,则从地到地不同的走法有______种.
18.有8名歌舞演员,其中6名会唱歌,5名会跳舞,从中选出3人,并指派1人唱歌,另2人跳舞,则不同的选派方法有__________ 种.
19.某人设计了一项单人游戏,规则如下:先将一枚棋子放在如图所示的正方形(边长为个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为,则棋子就按逆时针方向行走个单位,一直循环下去.某人掷三次骰子后,棋子恰好又回到点处的所有不同走法共有______种.
20.已知关于的方程有且仅有一个实数根,其中互不相同的实数、、、,且,则、、、的可能取值共有________种.(请用数字作答)
四、解答题
21.已知集合,点在直角坐标平面上,且.
(1)平面上共有多少个满足条件的点P?
(2)有多少个点P在第二象限内?
(3)有多少个点P不在直线上?
22.如图,从甲地到乙地有3条公路,从乙地到丙地有2条公路,从甲地不经过乙地到丙地有2条水路.问:
(1)从甲地经乙地到丙地有多少种不同的走法?
(2)从甲地到丙地共有多少种不同的走法?
23.有一项活动,需从3位教师、8名男同学和5名女同学中选人参加.
(1)若只需1人参加,则有多少种不同的选法?
(2)若需教师、男同学、女同学各1人参加,则有多少种不同的选法?
24.一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N*)等份,种植红、黄、蓝三种颜色不同的花,要求相邻两部分种植不同颜色的花.
(1)如图①,圆环分成3等份,分别为a1,a2,a3,则有多少种不同的种植方法?
(2)如图②,圆环分成4等份,分别为a1,a2,a3,a4,则有多少种不同的种植方法?
25.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)从这些书中任取一本,有多少种不同的取法?
(2)从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)从这些书中取不同科目的书共两本,有多少种不同的取法?
26.某校高三共有三个班,各班人数如下表.
男生人数 女生人数 总人数
高三(1)班 30 20 50
高三(2)班 30 30 60
高三(3)班 35 20 55
(1)从三个班中选1名学生任学生会主席,有多少种不同的选法;
(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?
27.设,,且B中元素满足:①任意一个元素的各数位的数字互不相同;②任意一个元素的任意两个数位的数字之和不等于9.
(1)求B中的两位数和三位数的个数;
(2)B中是否存在五位数、六位数?
(3)若从小到大排列B中元素,求第1081个元素.6.1分类加法计数原理与分步乘法计数原理
一、单选题
1.现有5幅不同的油画,2幅不同的国画,7幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有( )
A.7种 B.9种 C.14种 D.70种
【答案】C
【分析】根据分类加法计数原理求解即可
【解析】分为三类:
从国画中选,有2种不同的选法;从油画中选,有5种不同的选法;从水彩画中选,有7种不同的选法,
根据分类加法计数原理,共有5+2+7= 14(种)不同的选法;
故选:C
2.某大学食堂备有6种荤菜、5种素菜、3种汤,现要配成一荤一素一汤的套餐,则可以配成不同套餐的种数为( )
A.30 B.14 C.33 D.90
【答案】D
【分析】根据备有6种素菜,5种荤菜,3种汤,则素菜有6种选法,荤菜有5种选法,汤菜有3种选法,然后再利用分步计数原理求解
【解析】因为备有6种素菜,5种荤菜,3种汤,
所以素菜有6种选法,荤菜有5种选法,汤菜有3种选法,
所以要配成一荤一素一汤的套餐,则可以配制出不同的套餐有种
故选:D
3.用数字1,2,3,4,5,6组成无重复数字的三位数,然后由小到大排成一个数列,这个数列的项数为( ).
A.24 B.46 C.48 D.120
【答案】D
【分析】完成这件事只需先确定百位数,再确定十位数,最后确定个位数, 根据分步计数原理即可求解.
【解析】解:完成这件事需要分别确定百位、十位和个位数,可以先确定百位数,再确定十位数,最后确定个位数,因此要分步求解.
第一步:确定百位数,有6种方法;
第二步:确定十位数,有5种方法;
第三步:确定个位数,有4种方法.
根据分步乘法计数原理,共有6×5×4=120(个)三位数,
所以这个数列的项数为120.
故选:D.
4.某一数学问题可用综合法和分析法两种方法证明,有6名同学只会用综合法证明,有4名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种树为( ).
A.10 B.16 C.20 D.24
【答案】A
【分析】根据题意,利用分类加法计数原理,即可求解.
【解析】由题意,每一种方法都能证明该问题,根据分类加法计数原理,可得共有(种).
故选:A.
5.如图,要给①、②、③、④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方案种数为( ).
A.180 B.160 C.96 D.60
【答案】A
【分析】按照①②③④的顺序,结合乘法计数原理即可得到结果.
【解析】首先对①进行涂色,有5种方法,
然后对②进行涂色,有4种方法,
然后对③进行涂色,有3种方法,
然后对④进行涂色,有3种方法,
由乘法计数原理可得涂色方法种数为

故选:A
6.已知集合,,若从这两个集合中各取一个元素作为点的横坐标或纵坐标,则可得平面直角坐标系中第一、二象限内不同点的个数是( )
A.18 B.16 C.14 D.10
【答案】C
【分析】分M中的元素作点的横坐标,N中的元素作点的纵坐标和N中的元素作点的横坐标,M中的元素作点的纵坐标两类讨论求解.
【解析】分两类情况讨论:
第一类,从中取的元素作为横坐标,从中取的元素作为纵坐标,则第一、二象限内的点共有(个);
第二类,从中取的元素作为纵坐标,从中取的元素作为横坐标,则第一、二象限内的点共有(个),
由分类加法计数原理,所以所求个数为.
故选:C
7.核糖核酸RNA是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体.参与形成RNA的碱基有4种,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,假设某一RNA分子由100个碱基组成,则不同的RNA分子的种数为( )
A. B. C. D.
【答案】B
【分析】根据分步乘法计数原理进行计算即可.
【解析】每个碱基有4种可能,根据分步乘法计数原理,可得不同的RNA分子的种数为.故A,C,D错误.
故选:B.
8.在某种信息传输过程中,用4个数字的一个排列(允许数字重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )
A.10 B.11 C.12 D.7
【答案】B
【分析】由题意知与信息0110至多有两个对应的位置上的数字相同的信息包括三类:一是与信息0110由两个对应位置上的数字相同,二是与信息0110有一个对应位置上的数字相同,三是与信息0110没有一个对应位置上的数字相同,分别写出结果相加.
【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:
①与信息0110只有两个对应位置上的数字相同,有(个);
②与信息0110只有一个对应位置上的数字相同,有(个);
③与信息0110对应位置上的数字均不相同,有1个.
综上,与信息0110至多有两个对应位置上的数字相同的信息有(个).
故选:B
9.如图,将钢琴上的个键依次记为,,…,.设,若且,则称,,为大三和弦;若且,则称,,为小三和弦.用这个键可以构成的大三和弦与小三和弦的个数之和为( )
A.5 B.8 C.10 D.15
【答案】C
【分析】由大三和弦满,,列举出和的取值;小三和弦满足,,列举出和的取值;进而可得答案.
【解析】根据题意可知,大三和弦满,,所以有5种情况,即,,;,,;,,;,,;,,.小三和弦满足,,所以有5种情况,即,,;,,;,,;,,;,,.故大三和弦与小三和弦个数之和为,
故选:C.
10.某日,甲、乙、丙三个单位被系统随机预约到A,B,C三家医院接种疫苗且每个单位只能被随机预约到一家医院,每家医院每日至多接待两个单位.已知A医院接种的是只需要打一针的腺病毒载体疫苗,B医院接种的是需要打两针的灭活疫苗,C医院接种的是需要打三针的重组蛋白疫苗,则甲单位不接种需要打三针的重组蛋白疫苗的预约方案种数为( )
A.27 B.24 C.18 D.16
【答案】D
【分析】根据题意,甲不可预约C医院,则甲可预约A,B两家医院,分若甲预约A医院,乙预约A医院;若甲预约A医院,乙预约B或C医院;③若甲预约B医院,乙预约A或C医院;若甲预约B医院,乙预约B医院,四种情况,即可求解.
【解析】由题意,甲单位不接种需要打三针的重组蛋白疫苗,即甲不可预约C医院,则甲可预约A,B两家医院,
①若甲预约A医院,乙预约A医院,则丙可预约B,C医院,共2种情况;
②若甲预约A医院,乙预约B或C医院,则丙可预约A,B,C医院,共2×3=6种情况;
③若甲预约B医院,乙预约A或C医院,则丙可预约A,B,C医院,共2×3=6种情况;
④若甲预约B医院,乙预约B医院,则丙可预约A,C医院,共2种情况,
所以甲单位不接种需要打三针的重组蛋白疫苗的预约方案种数为种.
故选:D.
11.几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝A,B,C;(2)乙在下落的过程中依次撞击到树枝D,E,F;(3)丙在下落的过程中依次撞击到树枝G,A,C;(4)丁在下落的过程中依次撞击到树枝B,D,H;(5)戊在下落的过程中依次撞击到树枝I,C,E,则这九棵树枝从高到低不同的顺序共有( )
A.23 B.24 C.32 D.33
【答案】D
【分析】先判断出,按顺序排在前四个位置中的三个位置,,,且一定排在后四个位置,然后分排在前四个位置中的一个位置与不排在前四个位置中的一个位置两种情况讨论,利用分类计数加法原理可得结果.
【解析】不妨设代表树枝的高度,五根树枝从上至下共九个位置,
根据甲依次撞击到树枝;乙依次撞击到树枝;丙依次撞击到树枝;丁依次撞击到树枝;戊依次撞击到树枝可得,
在前四个位置,,,且一定排在后四个位置,
(1)若排在前四个位置中的一个位置,前四个位置有4种排法,若第五个位置排C,则第六个位置一定排D,后三个位置共有3种排法,若第五个位置排D,则后四个位置共有4种排法,所以I排在前四个位置中的一个位置时,共有种排法;
(2)若不排在前四个位置中的一个位置,则按顺序排在前四个位置,由于,所以后五个位置的排法就是H的不同排法,共5种排法,即若不排在前四个位置中的一个位置共有5种排法,
由分类计数原理可得,这9根树枝从高到低不同的次序有种.
故选:D.
【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.
12.空间中不共面的4点A,B,C,D,若其中3点到平面的距离相等且为第四个点到平面的倍,这样的平面的个数为( )
A.8 B.16 C.32 D.48
【答案】C
【分析】由题意分类讨论各种情况,然后利用加法原理确定满足题意的平面的个数即可.
【解析】第一种情况,A,B,C,D点在平面的同侧.
当平面∥平面BCD时,A与平面的距离是与平面BCD的距离的2倍.
这种情况下有4个平面.
第二种情况,A,B,C,D中有3个点在平面的一侧,第4个点在平面的另一侧,这时又有两种情形:
一种情形是平面与平面BCD平行,且A与平面的距离是平面与平面BCD距离的2倍.这时有4个平面.
另一种情形如图a所示,图中E,F分别是AB,AC的中点,K是AD的三等分点中靠近A的分点,A,B,C到平面EFK(即平面)的距离是D到平面EFK距离的一半.
∵EF可以是AB,AC的中点的连线,又可以是AB,BC的中点的连线,或AC,BC的中点的连线,
∴这种情形下的平面有3×4=12(个).
第三种情况,如图b所示,在A,B,C,D四点中,平面两侧各种有两点.
容易看出:点A到平面EFMN(平面)的距离是B,C,D到该平面距离的2倍.
就A,C与B,D分别位于平面两侧的情形来看,就有A离平面远,B离平面远,C离平面远,D离平面远这四种情况.
又“AC,BD异面,则这样的异面直线共有3对,
∴平面有4×3=12(个).
综上分析,平面有4+4+12+12=32(个).
故选C.
【点睛】本题主要考查分类讨论的数学思想,计数原理的应用,空间几何体的结构特征等知识,意在考查学生的转化能力和计算求解能力.
二、多选题
13.现有不同的红球4个,黄球5个,绿球6个,则下列说法正确的是( )
A.从中选出2个球,正好一红一黄,有9种不同的选法
B.若每种颜色选出1个球,有120种不同的选法
C.若要选出不同颜色的2个球,有31种不同的选法
D.若要不放回地依次选出2个球,有210种不同的选法
【答案】BD
【分析】根据分步与分类计数原理逐个求解即可
【解析】对A,从中选出2个球,正好一红一黄,有种不同的选法,所以该选项错误:
对B,若每种颜色选出1个球,有种不同的选法,所以该选项正确;
对C,若要选出不同颜色的2个球,有种不同的选法,所以该选项错误;
对D,若要不放回地依次选出2个球,有种不同的选法,所以该选项正确.
故选:BD
14.某学校高一年级数学课外活动小组中有男生7人,女生3人,则下列说法正确的是( )
A.从中选2人,1人做正组长,1人做副组长,共有100种不同的选法
B.从中选2人参加数学竞赛,其中男、女生各1人,共有21种不同的选法
C.从中选1人参加数学竞赛,共有10种不同的选法
D.若报名参加学校的足球队、羽毛球队,每人限报其中的1个队,共有100种不同的报名方法
【答案】BC
【分析】利用分步计数原理和分类计数原理逐一判断即可.
【解析】对于A,选1人做正组长,1人做副组长需要分两步,
先选正组长有10种选法,再选副组长有9种选法,则共有种不同的选法,故A错误;
对于B,从中选2人参加数学竞赛,其中男、女生各1人,则共有种不同的选法,故B正确;
对于C,选1人参加数学竞赛,既可以选男生,也可以选女生,则共有种不同的选法,故C正确;
对于D,每人报名都有2种选择,共有10人,则共有种不同的报名方法,故D错误.
故选:BC.
15.某校实行选课走班制度,张毅同学选择的是地理、生物、政治这三科,且生物在B层,该校周一上午选课走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则下列说法正确的是( )
第1节 第2节 第3节 第4节
地理1班 化学A层3班 地理2班 化学A层4班
生物A层1班 化学B层2班 生物B层2班 历史B层1班
物理A层1班 生物A层3班 物理A层2班 生物A层4班
物理B层2班 生物B层1班 物理B层1班 物理A层4班
政治1班 物理A层3班 政治2班 政治3班
A.此人有4种选课方式 B.此人有5种选课方式
C.自习不可能安排在第2节 D.自习可安排在4节课中的任一节
【答案】BD
【解析】根据表格分类讨论即可得到结果.
【解析】由于生物在B层,只有第2,3节有,故分两类:
若生物选第2节,
则地理可选第1节或第3节,有2种选法,
其他两节政治、自习任意选,
故有种(此种情况自习可安排在第1、3、4节中的某节);
若生物选第3节,
则地理只能选第1节,政治只能选第4节,自习只能选第2节,故有1种.
根据分类加法计数原理可得选课方式有种.
综上,自习可安排在4节课中的任一节.
故选:BD.
16.已知数字,由它们组成四位数,下列说法正确的有( )
A.组成可以有重复数字的四位数有个
B.组成无重复数字的四位数有96个
C.组成无重复数字的四位偶数有66个
D.组成无重复数字的四位奇数有28个
【答案】AB
【分析】根据题意,由分类分步计数原理依次分析各选项,即可得答案.
【解析】解:对A:四位数的首位不能为0,有4种情况,其他数位有5种情况,则组成可以有重复数字的四位数有个,故选项A正确;
对B:四位数的首位不能为0,有4种情况,在剩下的4个数字中任选3个,排在后面3 个数位,有种情况,则组成无重复数字的四位数有个,故选项B正确;
对C:若0在个位,有个四位偶数,若0不在个位,有个四位偶数,则组成无重复数字的四位偶数共有个四位偶数,故选项C错误;
对D:组成无重复数字的四位奇数有个,故选项D错误;
故选:AB.
三、填空题
17.从地到地要经过地,已知从地到地有三条路,从地到地有四条路,则从地到地不同的走法有______种.
【答案】12
【分析】根据分步乘法计数原理求解即可.
【解析】由分步乘法计数原理,从地到地不同的走法有种.
故答案为:12.
18.有8名歌舞演员,其中6名会唱歌,5名会跳舞,从中选出3人,并指派1人唱歌,另2人跳舞,则不同的选派方法有__________ 种.
【答案】48
【分析】先求出既会唱歌又会跳舞的人数,然后分唱歌只在会唱歌的人中取和唱歌在既会唱歌又会跳舞的人中取.
【解析】因为有8名歌舞演员,其中6名会唱歌,5名会跳舞,
所以既会唱歌又会跳舞的有人,
所以只会唱歌的有人,只会跳舞的有人
从只会唱歌的里选人去唱歌有种方法,从剩下会跳舞的5人中选人跳舞有种
所以此种情况有种;
从既会唱歌又会跳舞的人选1人去唱歌有种方法,从剩下会跳舞的4人中选人跳舞有种,
所以此种情况有种;
综上不同的选派方法有种.
故答案为:48
19.某人设计了一项单人游戏,规则如下:先将一枚棋子放在如图所示的正方形(边长为个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为,则棋子就按逆时针方向行走个单位,一直循环下去.某人掷三次骰子后,棋子恰好又回到点处的所有不同走法共有______种.
【答案】25
【分析】根据题意分析得,正方形周长为12,而抛掷三次骰子后棋子恰好又回到点处表示三次骰子的点数之和是12,据此分类讨论即可求解
【解析】由题意知正方形(边长为3个单位)的周长是12,
掷三次骰子后,棋子恰好又回到点处表示三次骰子的点数之和是12,
三个数字能够使得和为12的有1、5、6,2、4、6,3、4、5,3、3、6,5、5、2,4、4、4,共6种组合.
①1、5、6,2、4、6,3、4、5这三种组合中,每一种又可以列出6种不同结果,所以有种;
②3、3、6,5、5、2这两种组合中,每一种又可以列出3种不同结果,所以有种;
③组合4、4、4只有1种结果.
根据分类加法计数原理知,共有种不同走法.
故答案为:
20.已知关于的方程有且仅有一个实数根,其中互不相同的实数、、、,且,则、、、的可能取值共有________种.(请用数字作答)
【答案】
【分析】考虑,,分析得出或,对分, , , 四种情况讨论,列举出的可能情况,然后在所得结果乘以即可.
【解析】方程有且只有一个实根,
由绝对值三角不等式可得,

因为,考虑,,
因为,,
作出函数与函数如下图所示:
则有或.
若,则的可能情况有:、、;
若,则可能的情况有:、;
若,则;
若,则.
考虑、的大小,有种情况;考虑、的大小,有种情况;考虑、的位置,有种情况.
综上所述,、、、的可能取值共有种.
故答案为:.
【点睛】关键点点睛:本题考查分类计数原理的应用,解题的关键在于对的可能情况进行分类讨论,结合列举法求解.
四、解答题
21.已知集合,点在直角坐标平面上,且.
(1)平面上共有多少个满足条件的点P?
(2)有多少个点P在第二象限内?
(3)有多少个点P不在直线上?
【答案】(1)36
(2)6
(3)30
【分析】(1)(2)根据分步乘法计数原理即可求解,
(3)先求出在直线上的点的个数,用全部个数去掉在直线上的点,即可求解.
【解析】(1)第一步,先安排横坐标,,所以有6种选择,第二步,安排纵坐标,,所以有6种选择,所以一共有个满足条件的点,
(2)在第二象限,则,故可从这3个数字中选择1个,有3种选择,可从这2个数字中选择1个,有2种选择,故总共有个满足条件的点,
(3)在直线上点满足,此时有点共有6个,所有不在直线上点有个.
22.如图,从甲地到乙地有3条公路,从乙地到丙地有2条公路,从甲地不经过乙地到丙地有2条水路.问:
(1)从甲地经乙地到丙地有多少种不同的走法?
(2)从甲地到丙地共有多少种不同的走法?
【答案】(1)6种
(2)8种
【分析】(1)根据分步相乘计数原理即可得解;
(2)根据分步相乘和分类相加计数原理可得.
(1)
从甲地经乙地到丙地,共需两步完成:
第1步,从甲地到乙地,有3条公路可走;
第2步,从乙地到丙地,有2条公路可走.
根据分步乘法计数原理,从甲地经乙地到丙地有 (种)不同的走法.
(2)
要从甲地到丙地共有两类不同的方案:
第1类,从甲地经乙地到丙地,有6种不同的走法;
第2类,从甲地不经乙地到丙地,有2条水路可走,即有2种不同的走法.
由分类加法计数原理知,从甲地到丙地共有 (种)不同的走法.
23.有一项活动,需从3位教师、8名男同学和5名女同学中选人参加.
(1)若只需1人参加,则有多少种不同的选法?
(2)若需教师、男同学、女同学各1人参加,则有多少种不同的选法?
【答案】(1)16(种);(2)120(种).
【分析】(1)利用分类加法原理求解(1)利用分步乘法原理求解
【解析】(1)选1人,可分三类:
第1类,从教师中选1人,有3种不同的选法;
第2类,从男同学中选1人,有8种不同的选法;
第3类,从女同学中选1人,有5种不同的选法.
共有3+8+5=16(种)不同的选法.
(2)选教师、男同学、女同学各1人,分三步进行:
第1步,选教师,有3种不同的选法;
第2步,选男同学,有8种不同的选法;
第3步,选女同学,有5种不同的选法.
共有3×8×5=120(种)不同的选法.
24.一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N*)等份,种植红、黄、蓝三种颜色不同的花,要求相邻两部分种植不同颜色的花.
(1)如图①,圆环分成3等份,分别为a1,a2,a3,则有多少种不同的种植方法?
(2)如图②,圆环分成4等份,分别为a1,a2,a3,a4,则有多少种不同的种植方法?
【答案】(1)6种;(2)18种.
【分析】(1)利用分步计数原理求解即可.
(2)首先根据题意分成两类:第一类a1,a3不同色和第二类a1,a3同色,分别计算各类的得数再相加即可.
【解析】(1)先种植a1部分,有3种不同的种植方法,再种植a2,a3部分.
因为a2,a3与a1的颜色不同,a2,a3的颜色也不同,
所以由分步乘法计数原理,不同的种植方法有3×2×1=6(种).
(2)当a1,a3不同色时,有3×2×1×1=6(种)种植方法,
当a1,a3同色时,有3×2×1×2=12(种)种植方法,
由分类加法计数原理得,共有6+12=18(种)种植方法.
25.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)从这些书中任取一本,有多少种不同的取法?
(2)从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)从这些书中取不同科目的书共两本,有多少种不同的取法?
【答案】(1)14
(2)90
(3)63
【分析】(1)根据分类加法计数原理求解即可;
(2)根据分步乘法计数原理求解即可;
(3)分三种情况讨论求解即可;
【解析】(1)由于书架上有本书,
则从中任取一本,共有14种不同的取法.
(2)由题意分步完成,
第一步:取任取一本数学书,有3种取法;
第二步:取任取一本语文书,有5种取法;
第三步:取任取一本英语书,有6种取法;
由分步乘法计数原理得共有种不同的取法.
(3)取两本不同科目的数,可以分三种情况:
①一本数学书和一本语文书,有种情况;
②一本数学书和一本英语书,有种情况;
③一本语文书和一本英语书,有种情况;
根据分类加法计数原理,共有种情况.
26.某校高三共有三个班,各班人数如下表.
男生人数 女生人数 总人数
高三(1)班 30 20 50
高三(2)班 30 30 60
高三(3)班 35 20 55
(1)从三个班中选1名学生任学生会主席,有多少种不同的选法;
(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?
【答案】(1)165种;(2)80种.
【分析】(1)从每个班选1名学生任学生会主席都能独立完成这件事,因此应采用分类加法计数原理;
(2)完成这件事有三类方案,因此也应采用分类加法计数原理.
【解析】(1)从每个班选1名学生任学生会主席,共有3类不同的方案:
第1类,从高三(1)班中选出1名学生,有50种不同的选法;
第2类,从高三(2)班中选出1名学生,有60种不同的选法;
第3类,从高三(3)班中选出1名学生,有55种不同的选法.
根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165种不同的选法.
(2)从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:
第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;
第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;
第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.
根据分类加法计数原理知,从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80种不同的选法.
27.设,,且B中元素满足:①任意一个元素的各数位的数字互不相同;②任意一个元素的任意两个数位的数字之和不等于9.
(1)求B中的两位数和三位数的个数;
(2)B中是否存在五位数、六位数?
(3)若从小到大排列B中元素,求第1081个元素.
【答案】(1)两位数共有种,三位数有种
(2)五位数存在,不存在六位数
(3)4012
【分析】(1)利用分步计数原理直接计算;
(2)利用反证法可以证明;
(3)先求出符合题意的四位数有个,再找出B中第1081个元素即可.
(1)
两位数中,十位上的数字可取1,2,3,…,9,个位上的数字由于不能和十位上的数字重复,且与十位上的数字之和不能为9,故对于十位上的每一个数字,相应的个位数字有8种取法,从而满足题意的两位数共有(种).
对于三位数,我们先考虑百位上的数字,可取1,2,3,…,9;再考虑十位上的数字,由于不能与百位上的数字重复,且与百位上的数字之和不能为9,故有8种取法;
最后考虑个位上的数字,由于不能和百位、十位上的数字重复,且和百位、十位上的数字相加都不能等于9,故有6种取法,从而符合题意的三位数有(种).
(2)
五位数存在,如12340就是其中一个;不存在这样的六位数.理由如下:仿照(1)的解法,十万位上有9种取法,万位上有8种取法,千位上有6种取法,百位上有4种取法,十位上有2种取法,个位上有0种取法,矛盾.
(3)
由(1)可得,符合题意的两位数有72个,三位数有432个,符合题意的四位数有(个).四位数中千位上是1的有(个);千位上是2,3的也各有192个,由于.所以符合题意的数是千位上是4的最小的数,即B中第1081个元素是4012.