圆的周长(参考教案二)
教学目标
1.使学生认识圆的周长,初步理解圆周率的意义。
2.通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点和难点
推导圆周长的计算公式。理解圆周率的意义。
教学过程 设计
(一)复习准备
上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?
(二)学习新课
我们这节课就来研究圆的周长。(板书:圆的周长)
我想问问同学,你们都带了哪些圆形实物?
两人互相指指圆的周长在哪儿?
谁愿意到前面来指一指老师手里这个圆的周长。
谁跟他指得不一佯?为什么这样指不行?
老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?
老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?
哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。
请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。
(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)
请小组代表汇报本组的实验过程和实验结果。
同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。
(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。
看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。
想一想,以前我们学过哪些几何图形的周长?
长方形的周长和谁有关系?有什么关系?
正方形的周长和谁有关系?有什么关系?
圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。
(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)
我们得出了圆的周长和直径有关系。
(板书:圆的周长 直径)
这是我们大家一起发现的。科学家往往发现问 ( http: / / www.21cnjy.com )题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?
(学生分小组讨论。)
通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)
是不是这样呢?我们来验证一下。
(电脑演示:圆的周长是直径的3倍多一些。)
这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)
谁能说说圆周率是怎么得来的?
请同学们看书上是怎么说的?
早在2000年前,我国古代数学经典《周髀算 ( http: / / www.21cnjy.com )经》就指出:“圆经一而周三”,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。
(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)
约1500年前,我国伟大的数学家和天文学家 ( http: / / www.21cnjy.com )祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。
我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母π代表圆周率。(板书:π)
圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将π取两位小数。(板书:π≈3.14)
既然π是个固定的值了,只要知道什么就能求圆的周长?(直径。)
现在我们能不能计算黑板上这个圆的周长?
什么条件不知道?(直径。)
谁来测直径,用“分米”作单位。(板书:分米)
如果直径是2分米,半径就是几分米?
用半径能不能求圆周长?
现在我们试着用直径或半径来求黑板上圆的周长。
谁用直径求出圆的周长?
(板书:3.14×2=6.28(分米))
为什么这样列式?
(板书:圆的周长=直径×圆周率)
如果用C表示圆的周长,d表示直径,π表示圆周率,字母公式怎么表示?
(板书:C=πd)
谁能用半径求圆的周长?为什么这样做?
如果用字母r表示半径,字母公式怎么表示?
(板书:C=2πr)
(三)巩固反馈
1.求出下面各圆的周长。(单位:厘米)
2.判断,你认为正确画“√”,错误画“×”。
(1)一个圆的周长总是它的直径的π倍。 ( )
(2)圆的周长是6.28厘米,它的半径是2厘米。 ( )
(3)圆周长的一半与半个圆的周长相等。 ( )
3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的 [ ]
①半径
②直径
③周长
(2)圆形水池的直径是4米,绕池一周长 [ ]
①25.12米
②12.56米
③12.56平方米
(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]
①A圆大
②B圆大
③一样大
4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?
(四)总结全课
这节课你学会了什么?(引导学生总结本课所学的知识。)
课堂教学设计说明
本节课通过引导学生对圆周率 ( http: / / www.21cnjy.com )的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过“绕、滚”的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用“绕、滚”的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率π值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。
圆的周长 ( 二 )
2.判断,你认为正确画“√”,错误画“×”。
(1)一个圆的周长总是它的直径的π倍。 ( )
(2)圆的周长是6.28厘米,它的半径是2厘米。 ( )
(3)圆周长的一半与半个圆的周长相等。 ( )
3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的 [ ]
①半径
②直径
③周长
(2)圆形水池的直径是4米,绕池一周长 [ ]
①25.12米
②12.56米
③12.56