山东省(2020-2022)三年高考化学真题分层汇编-06化学反应原理(基础提升题)
一、单选题(共11题)
1.(2022·山东·高考真题)实验室用基准配制标准溶液并标定盐酸浓度,应选甲基橙为指示剂,并以盐酸滴定标准溶液。下列说法错误的是
A.可用量筒量取标准溶液置于锥形瓶中
B.应选用配带塑料塞的容量瓶配制标准溶液
C.应选用烧杯而非称量纸称量固体
D.达到滴定终点时溶液显橙色
2.(2022·山东·高考真题)在NO催化下,丙烷与氧气反应制备丙烯的部分反应机理如图所示。下列说法错误的是
A.含N分子参与的反应一定有电子转移
B.由NO生成的反应历程有2种
C.增大NO的量,的平衡转化率不变
D.当主要发生包含②的历程时,最终生成的水减少
3.(2022·山东·高考真题)高压氢还原法可直接从溶液中提取金属粉。以硫化铜精矿(含Zn、Fe元素的杂质)为主要原料制备Cu粉的工艺流程如下,可能用到的数据见下表。
开始沉淀pH 1.9 4.2 6.2
沉淀完全pH 3.2 6.7 8.2
下列说法错误的是A.固体X主要成分是和S;金属M为Zn
B.浸取时,增大压强可促进金属离子浸出
C.中和调pH的范围为3.2~4.2
D.还原时,增大溶液酸度有利于Cu的生成
4.(2022·山东·高考真题)工业上以为原料生产,对其工艺条件进行研究。现有含的、溶液,含的、溶液。在一定pH范围内,四种溶液中随pH的变化关系如图所示。下列说法错误的是
A.反应的平衡常数
B.
C.曲线④代表含的溶液的变化曲线
D.对含且和初始浓度均为的混合溶液,时才发生沉淀转化
5.(2021·山东·统考高考真题)下列由实验现象所得结论错误的是
A.向NaHSO3溶液中滴加氢硫酸,产生淡黄色沉淀,证明HSO具有氧化性
B.向酸性KMnO4溶液中加入Fe3O4粉末,紫色褪去,证明Fe3O4中含Fe(Ⅱ)
C.向浓HNO3中插入红热的炭,产生红棕色气体,证明炭可与浓HNO3反应生成NO2
D.向NaClO溶液中滴加酚酞试剂,先变红后褪色,证明NaClO在溶液中发生了水解反应
6.(2021·山东·统考高考真题)以KOH溶液为离子导体,分别组成CH3OH—O2、N2H4—O2、(CH3)2NNH2—O2清洁燃料电池,下列说法正确的是
A.放电过程中,K+均向负极移动
B.放电过程中,KOH物质的量均减小
C.消耗等质量燃料,(CH3)2NNH2—O2燃料电池的理论放电量最大
D.消耗1molO2时,理论上N2H4—O2燃料电池气体产物的体积在标准状况下为11.2L
7.(2021·山东·统考高考真题)18O标记的乙酸甲酯在足量NaOH溶液中发生水解,部分反应历程可表示为:+OH-+CH3O-能量变化如图所示。已知为快速平衡,下列说法正确的是
A.反应Ⅱ、Ⅲ为决速步
B.反应结束后,溶液中存在18OH-
C.反应结束后,溶液中存在CH318OH
D.反应Ⅰ与反应Ⅳ活化能的差值等于图示总反应的焓变
8.(2020·山东·高考真题)利用下列装置(夹持装置略)进行实验,能达到实验目的的是
A.用甲装置制备并收集CO2
B.用乙装置制备溴苯并验证有HBr产生
C.用丙装置制备无水MgCl2
D.用丁装置在铁上镀铜
9.(2020·山东·高考真题)以菱镁矿(主要成分为MgCO3,含少量SiO2,Fe2O3和A12O3)为原料制备高纯镁砂的工艺流程如下:
已知浸出时产生的废渣中有SiO2,Fe(OH)3和Al(OH)3。下列说法错误的是
A.浸出镁的反应为
B.浸出和沉镁的操作均应在较高温度下进行
C.流程中可循环使用的物质有NH3、NH4Cl
D.分离Mg2+与Al3+、Fe3+是利用了它们氢氧化物Ksp的不同
10.(2020·山东·高考真题)微生物脱盐电池是一种高效、经济的能源装置,利用微生物处理有机废水获得电能,同时可实现海水淡化。现以NaCl溶液模拟海水,采用惰性电极,用下图装置处理有机废水(以含 CH3COO-的溶液为例)。下列说法错误的是
A.负极反应为
B.隔膜1为阳离子交换膜,隔膜2为阴离子交换膜
C.当电路中转移1mol电子时,模拟海水理论上除盐58.5g
D.电池工作一段时间后,正、负极产生气体的物质的量之比为2:1
11.(2020·山东·高考真题)采用惰性电极,以去离子水和氧气为原料通过电解法制备双氧水的装置如下图所示。忽略温度变化的影响,下列说法错误的是
A.阳极反应为
B.电解一段时间后,阳极室的pH未变
C.电解过程中,H+由a极区向b极区迁移
D.电解一段时间后,a极生成的O2与b极反应的O2等量
二、多选题(共6题)
12.(2022·山东·高考真题)设计如图装置回收金属钴。保持细菌所在环境pH稳定,借助其降解乙酸盐生成,将废旧锂离子电池的正极材料转化为,工作时保持厌氧环境,并定时将乙室溶液转移至甲室。已知电极材料均为石墨材质,右侧装置为原电池。下列说法正确的是
A.装置工作时,甲室溶液pH逐渐增大
B.装置工作一段时间后,乙室应补充盐酸
C.乙室电极反应式为
D.若甲室减少,乙室增加,则此时已进行过溶液转移
13.(2022·山东·高考真题)是一种钠离子电池正极材料,充放电过程中正极材料立方晶胞(示意图)的组成变化如图所示,晶胞内未标出因放电产生的0价Cu原子。下列说法正确的是
A.每个晶胞中个数为x
B.每个晶胞完全转化为晶胞,转移电子数为8
C.每个晶胞中0价Cu原子个数为
D.当转化为时,每转移电子,产生原子
14.(2021·山东·统考高考真题)为完成下列各组实验,所选玻璃仪器和试剂均准确、完整的是(不考虑存放试剂的容器)
实验目的 玻璃仪器 试剂
A 配制100mL一定物质的量浓度的NaCl溶液 100mL容量瓶、胶头滴管、烧杯、量筒、玻璃棒 蒸馏水、NaCl固体
B 制备Fe(OH)3胶体 烧杯、酒精灯、胶头滴管 蒸馏水、饱和FeCl3溶液
C 测定NaOH溶液浓度 烧杯、锥形瓶、胶头滴管、酸式滴定管 待测NaOH溶液、已知浓度的盐酸、甲基橙试剂
D 制备乙酸乙酯 试管、量筒、导管、酒精灯 冰醋酸、无水乙醇、饱和Na2CO3溶液
A.A B.B C.C D.D
15.(2021·山东·统考高考真题)赖氨酸[H3N+(CH2)4CH(NH2)COO-,用HR表示]是人体必需氨基酸,其盐酸盐(H3RCl2)在水溶液中存在如下平衡:H3R2+H2R+HRR-。向一定浓度的H3RCl2溶液中滴加NaOH溶液,溶液中H3R2+、H2R+、HR和R-的分布系数δ(x)随pH变化如图所示。已知δ(x)=,下列表述正确的是
A.>
B.M点,c(Cl-) +c(OH-)+c(R-)=2c(H2R+)+c(Na+)+c(H+)
C.O点,pH=
D.P点,c(Na+)>c(Cl-)>c(OH-)>c(H+)
16.(2020·山东·高考真题)1,3-丁二烯与HBr发生加成反应分两步:第一步H+进攻1,3-丁二烯生成碳正离子();第二步Br -进攻碳正离子完成1,2-加成或1,4-加成。反应进程中的能量变化如下图所示。已知在0℃和40℃时,1,2-加成产物与1,4-加成产物的比例分别为70:30和15:85。下列说法正确的是
A.1,4-加成产物比1,2-加成产物稳定
B.与0℃相比,40℃时1,3-丁二烯的转化率增大
C.从0℃升至40℃,1,2-加成正反应速率增大,1,4-加成正反应速率减小
D.从0℃升至40℃,1,2-加成正反应速率的增大程度小于其逆反应速率的增大程度
17.(2020·山东·高考真题)25℃时,某混合溶液中,1gc( CH3COOH)、1gc(CH3COO-)、lgc(H+)和1gc(OH-)随pH变化的关系如下图所示。Ka为CH3COOH的电离常数,下列说法正确的是
A.O点时,
B.N点时,
C.该体系中,
D.pH由7到14的变化过程中, CH3COO-的水解程度始终增大
三、实验题(共2题)
18.(2021·山东·统考高考真题)六氯化钨(WCl6)可用作有机合成催化剂,熔点为283℃,沸点为340℃,易溶于CS2,极易水解。实验室中,先将三氧化钨(WO3)还原为金属钨(W)再制备WCl6,装置如图所示(夹持装置略)。回答下列问题:
(1)检查装置气密性并加入WO3。先通N2,其目的是___;一段时间后,加热管式炉,改通H2,对B处逸出的H2进行后续处理。仪器A的名称为___,证明WO3已被完全还原的现象是___。
(2)WO3完全还原后,进行的操作为:①冷却,停止通H2;②以干燥的接收装置替换E;③在B处加装盛有碱石灰的干燥管;④……;⑤加热,通Cl2;⑥……。碱石灰的作用是___;操作④是___,目的是___。
(3)利用碘量法测定WCl6产品纯度,实验如下:
①称量:将足量CS2(易挥发)加入干燥的称量瓶中,盖紧称重为m1g;开盖并计时1分钟,盖紧称重为m2g;再开盖加入待测样品并计时1分钟,盖紧称重为m3g,则样品质量为___g(不考虑空气中水蒸气的干扰)。
②滴定:先将WCl6转化为可溶的Na2WO4,通过IO离子交换柱发生反应:WO+Ba(IO3)2=BaWO4+2IO;交换结束后,向所得含IO的溶液中加入适量酸化的KI溶液,发生反应:IO+5I-+6H+=3I2+3H2O;反应完全后,用Na2S2O3标准溶液滴定,发生反应:I2+2S2O=2I-+S4O。滴定达终点时消耗cmol L-1的Na2S2O3溶液VmL,则样品中WCl6(摩尔质量为Mg mol-1)的质量分数为___。称量时,若加入待测样品后,开盖时间超过1分钟,则滴定时消耗Na2S2O3溶液的体积将___(填“偏大”“偏小”或“不变”),样品中WCl6质量分数的测定值将___(填“偏大”“偏小”或“不变”)。
19.(2020·山东·高考真题)某同学利用Cl2氧化K2MnO4制备KMnO4的装置如下图所示(夹持装置略):
已知:锰酸钾(K2MnO4)在浓强碱溶液中可稳定存在,碱性减弱时易发生反应:
回答下列问题:
(1)装置A中a的作用是______________;装置C中的试剂为________________;装置A中制备Cl2的化学方程为______________。
(2)上述装置存在一处缺陷,会导致KMnO4产率降低,改进的方法是________________。
(3)KMnO4常作氧化还原滴定的氧化剂,滴定时应将KMnO4溶液加入___________(填“酸式”或“碱式”)滴定管中;在规格为50.00mL的滴定管中,若KMnO4溶液起始读数为15.00mL,此时滴定管中KMnO4溶液的实际体积为______________(填标号)。
A.15.00 mL B.35.00mL C.大于35.00mL D.小于15.00m1
(4)某FeC2O4﹒2H2O样品中可能含有的杂质为Fe2(C2O4)3、H2C2O4﹒2H2O,采用KMnO4滴定法测定该样品的组成,实验步骤如下:
Ⅰ.取mg样品于锥形瓶中,加入稀H2SO4溶解,水浴加热至75℃。用 c mol﹒L-1的KMnO4溶液趁热滴定至溶液出现粉红色且30s内不褪色,消耗KMnO4溶液V1mL。
Ⅱ.向上述溶液中加入适量还原剂将Fe3+完全还原为Fe2+,加入稀H2SO4酸化后,在75℃继续用KMnO4溶液滴定至溶液出现粉红色且30s内不褪色,又消耗KMnO4溶液V2mL。
样品中所含的质量分数表达式为_________________。
下列关于样品组成分析的说法,正确的是__________(填标号)。
A.时,样品中一定不含杂质
B.越大,样品中含量一定越高
C.若步骤I中滴入KMnO4溶液不足,则测得样品中Fe元素含量偏低
D.若所用KMnO4溶液实际浓度偏低,则测得样品中Fe元素含量偏高
四、工业流程题(共3题)
20.(2022·山东·高考真题)工业上以氟磷灰石[,含等杂质]为原料生产磷酸和石膏,工艺流程如下:
回答下列问题:
(1)酸解时有产生。氢氟酸与反应生成二元强酸,离子方程式为_______。
(2)部分盐的溶度积常数见下表。精制Ⅰ中,按物质的量之比加入脱氟,充分反应后,_______;再分批加入一定量的,首先转化为沉淀的离子是_______。
(3)浓度(以计)在一定范围时,石膏存在形式与温度、浓度(以计)的关系如图甲所示。酸解后,在所得、为45的混合体系中,石膏存在形式为_______(填化学式);洗涤时使用一定浓度的硫酸溶液而不使用水,原因是_______,回收利用洗涤液X的操作单元是_______;一定温度下,石膏存在形式与溶液中和的关系如图乙所示,下列条件能实现酸解所得石膏结晶转化的是_______(填标号)。
A.、、 B.、、
C.、、 D.、、
21.(2021·山东·统考高考真题)工业上以铬铁矿(FeCr2O4,含Al、Si氧化物等杂质)为主要原料制备红矾钠(Na2Cr2O7 2H2O)的工艺流程如图。回答下列问题:
(1)焙烧的目的是将FeCr2O4转化为Na2CrO4并将Al、Si氧化物转化为可溶性钠盐,焙烧时气体与矿料逆流而行,目的是___。
(2)矿物中相关元素可溶性组分物质的量浓度c与pH的关系如图所示。当溶液中可溶组分浓度c≤1.0×10-5mol L-1时,可认为已除尽。
中和时pH的理论范围为___;酸化的目的是___;Fe元素在___(填操作单元的名称)过程中除去。
(3)蒸发结晶时,过度蒸发将导致___;冷却结晶所得母液中,除Na2Cr2O7外,可在上述流程中循环利用的物质还有____。
(4)利用膜电解技术(装置如图所示),以Na2CrO4为主要原料制备Na2Cr2O7的总反应方程式为:4Na2CrO4+4H2O2Na2Cr2O7+4NaOH+2H2↑+O2↑。则Na2Cr2O7在___(填“阴”或“阳”)极室制得,电解时通过膜的离子主要为___。
22.(2020·山东·高考真题)用软锰矿(主要成分为MnO2,含少量Fe3O4、Al2O3)和BaS制备高纯MnCO3的工艺流程如下:
已知:MnO2是一种两性氧化物;25℃时相关物质的Ksp见下表。
物质 Fe(OH)2 Fe(OH)3 Al(OH)3 Mn(OH)2
Ksp
回答下列问题
(1)软锰矿预先粉碎的目的是____________,MnO2与BaS溶液反应转化为MnO的化学方程式为________。
(2)保持BaS投料量不变,随MnO2与BaS投料比增大,S的量达到最大值后无明显变化,而Ba(OH)2的量达到最大值后会减小,减小的原因是________。
(3)滤液I可循环使用,应当将其导入到________操作中(填操作单元的名称)。
(4)净化时需先加入的试剂X为________(填化学式)。再使用氨水调溶液的pH,则pH的理论最小值为_______(当溶液中某离子浓度时,可认为该离子沉淀完全)。
(5)碳化过程中发生反应的离子方程式为______________________。
五、原理综合题(共3题)
23.(2022·山东·高考真题)利用丁内酯(BL)制备1,丁二醇(BD),反应过程中伴有生成四氢呋喃(THF)和丁醇(BuOH)的副反应,涉及反应如下:
已知:①反应Ⅰ为快速平衡,可认为不受慢反应Ⅱ、Ⅲ的影响;②因反应Ⅰ在高压氛围下进行,故压强近似等于总压。回答下列问题:
(1)以或BD为初始原料,在、的高压氛围下,分别在恒压容器中进行反应。达平衡时,以BL为原料,体系向环境放热;以BD为原料,体系从环境吸热。忽略副反应热效应,反应Ⅰ焓变_______。
(2)初始条件同上。表示某物种i的物质的量与除外其它各物种总物质的量之比,和随时间t变化关系如图甲所示。实验测得,则图中表示变化的曲线是_______;反应Ⅰ平衡常数_______(保留两位有效数字)。以BL为原料时,时刻_______,BD产率=_______(保留两位有效数字)。
(3)为达平衡时与的比值。、、三种条件下,以为初始原料,在相同体积的刚性容器中发生反应,随时间t变化关系如图乙所示。因反应在高压氛围下进行,可忽略压强对反应速率的影响。曲线a、b、c中,最大的是_______(填代号);与曲线b相比,曲线c达到所需时间更长,原因是_______。
24.(2021·山东·统考高考真题)2-甲氧基-2-甲基丁烷(TAME)常用作汽油原添加剂。在催化剂作用下,可通过甲醇与烯烃的液相反应制得,体系中同时存在如图反应:
反应Ⅰ:+CH3OH △H1
反应Ⅱ:+CH3OH△H2
反应Ⅲ: △H3
回答下列问题:
(1)反应Ⅰ、Ⅱ、Ⅲ以物质的量分数表示的平衡常数Kx与温度T变化关系如图所示。据图判断,A和B中相对稳定的是__(用系统命名法命名);的数值范围是___(填标号)。
A.<-1 B.-1~0 C.0~1 D.>1
(2)为研究上述反应体系的平衡关系,向某反应容器中加入1.0molTAME,控制温度为353K,测得TAME的平衡转化率为α。已知反应Ⅲ的平衡常数Kx3=9.0,则平衡体系中B的物质的量为___mol,反应Ⅰ的平衡常数Kx1=___。同温同压下,再向该容器中注入惰性溶剂四氢呋喃稀释,反应Ⅰ的化学平衡将__(填“正向移动”“逆向移动”或“不移动”)平衡时,A与CH3OH物质的量浓度之比c(A):c(CH3OH)=___。
(3)为研究反应体系的动力学行为,向盛有四氢呋喃的另一容器中加入一定量A、B和CH3OH。控制温度为353K,A、B物质的量浓度c随反应时间t的变化如图所示。代表B的变化曲线为__(填“X”或“Y”);t=100s时,反应Ⅲ的正反应速率v正__逆反应速率v逆(填“>”“<”或“=)。
25.(2020·山东·高考真题)探究CH3OH合成反应化学平衡的影响因素,有利于提高CH3OH的产率。以CO2、H2为原料合成CH3OH涉及的主要反应如下:
Ⅰ.
Ⅱ.
Ⅲ.
回答下列问题:
(1)_________。
(2)一定条件下,向体积为VL的恒容密闭容器中通入1 mol CO2和3 mol H2发生上述反应,达到平衡时,容器中CH3OH(g)为ɑ mol,CO为b mol,此时H2(g)的浓度为__________mol﹒L-1(用含a、b、V的代数式表示,下同),反应Ⅲ的平衡常数为___________。
(3)不同压强下,按照n(CO2):n(H2)=1:3投料,实验测定CO2的平衡转化率和CH3OH的平衡产率随温度的变化关系如下图所示。
已知:CO2的平衡转化率=
CH3OH的平衡产率=
其中纵坐标表示CO2平衡转化率的是图___________(填“甲”或“乙”);压强p1、p2、p3由大到小的顺序为___________;图乙中T1温度时,三条曲线几乎交于一点的原因是___________。
(4)为同时提高CO2的平衡转化率和CH3OH的平衡产率,应选择的反应条件为_________(填标号)。
A.低温、高压 B.高温、低压 C.低温、低压 D.高温、高压
试卷第4页,共17页
试卷第5页,共17页
参考答案:
1.A
【分析】选甲基橙为指示剂,并以盐酸滴定Na2CO3标准溶液,则应将Na2CO3标准溶液置于锥形瓶中,将待测盐酸置于酸式滴定管中,滴定终点时溶液由黄色变为橙色。
【详解】A.量筒的精确度不高,不可用量筒量取Na2CO3标准溶液,应该用碱式滴定管或移液管量取25.00 mL Na2CO3标准溶液置于锥形瓶中,A说法错误;
B.Na2CO3溶液显碱性,盛放Na2CO3溶液的容器不能用玻璃塞,以防碱性溶液腐蚀玻璃产生有粘性的硅酸钠溶液而将瓶塞粘住,故应选用配带塑料塞的容量瓶配制Na2CO3标准溶液,B说法正确;
C.Na2CO3有吸水性且有一定的腐蚀性,故应选用烧杯而非称量纸称量Na2CO3固体,C说法正确;
D.Na2CO3溶液显碱性,甲基橙滴入Na2CO3溶液中显黄色,当滴入最后一滴盐酸时,溶液由黄色突变为橙色且半分钟之内不变色即为滴定终点,故达到滴定终点时溶液显橙色,D说法正确;
综上所述,本题选A。
2.D
【详解】A.根据反应机理的图示知,含N分子发生的反应有NO+ OOH=NO2+ OH、NO+NO2+H2O=2HONO、NO2+ C3H7=C3H6+HONO、HONO=NO+ OH,含N分子NO、NO2、HONO中N元素的化合价依次为+2价、+4价、+3价,上述反应中均有元素化合价的升降,都为氧化还原反应,一定有电子转移,A项正确;
B.根据图示,由NO生成HONO的反应历程有2种,B项正确;
C.NO是催化剂,增大NO的量,C3H8的平衡转化率不变,C项正确;
D.无论反应历程如何,在NO催化下丙烷与O2反应制备丙烯的总反应都为2C3H8+O22C3H6+2H2O,当主要发生包含②的历程时,最终生成的水不变,D项错误;
答案选D。
3.D
【分析】CuS精矿(含有杂质Zn、Fe元素)在高压O2作用下,用硫酸溶液浸取,CuS反应产生为CuSO4、S、H2O,Fe2+被氧化为Fe3+,然后加入NH3调节溶液pH,使Fe3+形成Fe(OH)3沉淀,而Cu2+、Zn2+仍以离子形式存在于溶液中,过滤得到的滤渣中含有S、Fe(OH)3;滤液中含有Cu2+、Zn2+;然后向滤液中通入高压H2,根据元素活动性:Zn>H>Cu,Cu2+被还原为Cu单质,通过过滤分离出来;而Zn2+仍然以离子形式存在于溶液中,再经一系列处理可得到Zn单质。
【详解】A.经过上述分析可知固体X主要成分是S、Fe(OH)3,金属M为Zn,A正确;
B.CuS难溶于硫酸,在溶液中存在沉淀溶解平衡CuS(s)Cu2+(aq)+S2-(aq),增大O2的浓度,可以反应消耗S2-,使之转化为S,从而使沉淀溶解平衡正向移动,从而可促进金属离子的浸取,B正确;
C.根据流程图可知:用NH3调节溶液pH时,要使Fe3+转化为沉淀,而Cu2+、Zn2+仍以离子形式存在于溶液中,结合离子沉淀的pH范围,可知中和时应该调节溶液pH范围为3.2~4.2,C正确;
D.在用H2还原Cu2+变为Cu单质时,H2失去电子被氧化为H+,与溶液中OH-结合形成H2O,若还原时增大溶液的酸度,c(H+)增大,不利于H2失去电子还原Cu单质,因此不利于Cu的生成,D错误;
故合理选项是D。
4.D
【分析】溶液pH变化,含硫酸锶固体的硫酸钠溶液中锶离子的浓度几乎不变,pH相同时,溶液中硫酸根离子越大,锶离子浓度越小,所以曲线①代表含硫酸锶固体的0.1mol/L硫酸钠溶液的变化曲线,曲线②代表含硫酸锶固体的1mol/L硫酸钠溶液的变化曲线;碳酸是弱酸,溶液pH减小,溶液中碳酸根离子离子浓度越小,锶离子浓度越大,pH相同时,1mol/L碳酸钠溶液中碳酸根离子浓度大于0.1mol/L碳酸钠溶液,则曲线③表示含碳酸锶固体的0.1mol/L碳酸钠溶液的变化曲线,曲线④表示含碳酸锶固体的1mol/L碳酸钠溶液的变化曲线。
【详解】A.反应SrSO4(s)+COSrCO3(s)+SO的平衡常数K===,A正确;
B.由分析可知,曲线①代表含硫酸锶固体的0.1mol/L硫酸钠溶液的变化曲线,则硫酸锶的溶度积Ksp(SrSO4)=10—5.5×0.1=10—6.5,温度不变,溶度积不变,则溶液pH为7.7时,锶离子的浓度为=10—6.5,则a为-6.5,B正确;
C.由分析可知,曲线④表示含碳酸锶固体的1mol/L碳酸钠溶液的变化曲线,C正确;
D.对含SrSO4(s)且Na2SO4和Na2CO3初始浓度均为1.0mol·L-1的混合溶液中锶离子的浓度为10-6, 5,根据图示,锶离子的降低,所以发生沉淀转化,D错误;
故选D。
5.C
【详解】A.淡黄色沉淀是S,在反应过程中硫元素由NaHSO3中的+4价降低到0价,发生还原反应,体现氧化性,A项不符合题意;
B.酸性高锰酸钾溶液具有强氧化性,与还原性物质反应紫色才会褪去,所以可以证明Fe3O4中有还原性物质,即Fe(Ⅱ),B项不符合题意;
C.硝酸受热分解也会生成NO2,所以无法证明是炭与硝酸反应生成NO2,C项符合题意;
D.先变红说明溶液显碱性,证明NaClO在溶液中发生了水解,,后来褪色,是因为水解产生了漂白性物质HClO,D项不符合题意;
故选C。
6.C
【分析】碱性环境下,甲醇燃料电池总反应为:2CH3OH+3O2+4KOH=2K2CO3+6H2O;N2H4-O2清洁燃料电池总反应为:N2H4+O2=N2+2H2O;偏二甲肼[(CH3)2NNH2]中C和N的化合价均为-2价,H元素化合价为+1价,所以根据氧化还原反应原理可推知其燃料电池的总反应为:(CH3)2NNH2+4O2+4KOH=2K2CO3+N2+6H2O,据此结合原电池的工作原理分析解答。
【详解】A.放电过程为原电池工作原理,所以钾离子均向正极移动,A错误;
B.根据上述分析可知,N2H4-O2清洁燃料电池的产物为氮气和水,其总反应中未消耗KOH,所以KOH的物质的量不变,其他两种燃料电池根据总反应可知,KOH的物质的量减小,B错误;
C.理论放电量与燃料的物质的量和转移电子数有关,设消耗燃料的质量均为mg,则甲醇、N2H4和(CH3)2NNH2放电量(物质的量表达式)分别是:、、,通过比较可知(CH3)2NNH2理论放电量最大,C正确;
D.根据转移电子数守恒和总反应式可知,消耗1molO2生成的氮气的物质的量为1mol,在标准状况下为22.4L,D错误;
故选C。
7.B
【详解】A.一般来说,反应的活化能越高,反应速率越慢,由图可知,反应I和反应IV的活化能较高,因此反应的决速步为反应I、IV,故A错误;
B.反应I为加成反应,而与为快速平衡,反应II的成键和断键方式为或,后者能生成18OH-,因此反应结束后,溶液中存在18OH-,故B正确;
C.反应III的成键和断键方式为或,因此反应结束后溶液中不会存在CH318H,故C错误;
D.该总反应对应反应物的总能量高于生成物总能量,总反应为放热反应,因此和CH3O-的总能量与和OH-的总能量之差等于图示总反应的焓变,故D错误;
综上所述,正确的是B项,故答案为B。
8.C
【详解】A. CO2密度大于空气,应采用向上排空气法收集,A错误;
B. 苯与溴在溴化铁作用下反应,反应较剧烈,反应放热,且溴易挥发,挥发出来的溴单质能与水反应生成氢溴酸,所以验证反应生成的HBr,应先将气体通过四氯化碳,将挥发的溴单质除去,B错误;
C. MgCl2能水解,在加热时通入干燥的HCl,能避免MgCl2的水解,C正确;
D. 电解时,阳极发生氧化反应,阴极发生还原反应,所以丁装置铁为阳极,失去电子,生成二价铁离子,铜为阴极,溶液中的铜离子得到电子,得到铜,D错误。
答案选C。
【点睛】本题为实验题,结合物质的性质和电解的原理进行解题,掌握常见物质的制备方法,注意水解的知识点。
9.B
【分析】菱镁矿煅烧后得到轻烧粉,MgCO3转化为MgO,加入氯化铵溶液浸取,浸出的废渣有SiO2、Fe(OH)3、Al(OH)3,同时产生氨气,则此时浸出液中主要含有Mg2+,加入氨水得到Mg(OH)2沉淀,煅烧得到高纯镁砂。
【详解】A.高温煅烧后Mg元素主要以MgO的形式存在,MgO可以与铵根水解产生的氢离子反应,促进铵根的水解,所以得到氯化镁、氨气和水,化学方程式为MgO+2NH4Cl=MgCl2+2NH3↑+H2O,故A正确;
B.一水合氨受热易分解,沉镁时在较高温度下进行会造成一水合氨大量分解,挥发出氨气,降低利用率,故B错误;
C.浸出过程产生的氨气可以回收制备氨水,沉镁时氯化镁与氨水反应生成的氯化铵又可以利用到浸出过程中,故C正确;
D.Fe(OH)3、Al(OH)3的Ksp远小于Mg(OH)2的Ksp,所以当pH达到一定值时Fe3+、Al3+产生沉淀,而Mg2+不沉淀,从而将其分离,故D正确;
故答案为B。
10.B
【分析】据图可知a极上CH3COOˉ转化为CO2和H+,C元素被氧化,所以a极为该原电池的负极,则b极为正极。
【详解】A.a极为负极,CH3COOˉ失电子被氧化成CO2和H+,结合电荷守恒可得电极反应式为CH3COOˉ+2H2O-8eˉ=2CO2↑+7H+,故A正确;
B.为了实现海水的淡化,模拟海水中的氯离子需要移向负极,即a极,则隔膜1为阴离子交换膜,钠离子需要移向正极,即b极,则隔膜2为阳离子交换膜,故B错误;
C.当电路中转移1mol电子时,根据电荷守恒可知,海水中会有1molClˉ移向负极,同时有1molNa+移向正极,即除去1molNaCl,质量为58.5g,故C正确;
D.b极为正极,水溶液为酸性,所以氢离子得电子产生氢气,电极反应式为2H++2eˉ=H2↑,所以当转移8mol电子时,正极产生4mol气体,根据负极反应式可知负极产生2mol气体,物质的量之比为4:2=2:1,故D正确;
故答案为B。
11.D
【分析】a极析出氧气,氧元素的化合价升高,做电解池的阳极,b极通入氧气,生成过氧化氢,氧元素的化合价降低,被还原,做电解池的阴极。
【详解】A.依据分析a极是阳极,属于放氧生酸性型的电解,所以阳极的反应式是2H2O-4e-=4H++O2↑,故A正确,但不符合题意;
B.电解时阳极产生氢离子,氢离子是阳离子,通过质子交换膜移向阴极,所以电解一段时间后,阳极室的pH值不变,故B正确,但不符合题意;
C.有B的分析可知,C正确,但不符合题意;
D.电解时,阳极的反应为:2H2O-4e-=4H++O2↑,阴极的反应为:O2+2e-+2H+=H2O2,总反应为:O2+2H2O=2H2O2,要消耗氧气,即是a极生成的氧气小于b极消耗的氧气,故D错误,符合题意;
故选:D。
12.BD
【分析】由于乙室中两个电极的电势差比甲室大,所以乙室是原电池,甲室是电解池,然后根据原电池、电解池反应原理分析解答。
【详解】A.电池工作时,甲室中细菌上乙酸盐的阴离子失去电子被氧化为CO2气体,同时生成H+,电极反应式为CH3COO--8 e-+2 H2O =2CO2↑+7 H+,H+通过阳膜进入阴极室,甲室的电极反应式为Co2++2e-=Co,因此,甲室溶液pH逐渐减小,A错误;
B.对于乙室,正极上LiCoO2得到电子,被还原为Co2+,同时得到Li+,其中的O2-与溶液中的H+结合H2O,电极反应式为2LiCoO2+2e-+8H+=2Li++2Co2++4H2O,负极发生的反应为CH3COO--8 e-+2 H2O =2CO2↑+7 H+,负极产生的H+通过阳膜进入正极室,但是乙室的H+浓度仍然是减小的,因此电池工作一段时间后应该补充盐酸,B正确;
C.电解质溶液为酸性,不可能大量存在OH-,乙室电极反应式为:LiCoO2+e-+4H+=Li++Co2++2H2O,C错误;
D.若甲室Co2+减少200 mg,则电子转移物质的量为n(e-)= ;若乙室Co2+增加300 mg,则转移电子的物质的量为n(e-)=,由于电子转移的物质的量不等,说明此时已进行过溶液转移,即将乙室部分溶液转移至甲室,D正确;
故合理选项是BD。
13.BD
【详解】A.由晶胞结构可知,位于顶点和面心的硒离子个数为8×+6×=4,位于体内的铜离子和亚铜离子的个数之和为8,设晶胞中的铜离子和亚铜离子的个数分别为a和b,则a+b=8-4x,由化合价代数和为0可得2a+b=4×2,解得a=4x,故A错误;
B.由题意可知,Na2Se转化为Cu2-xSe的电极反应式为Na2Se-2e-+(2-x)Cu=Cu2-xSe+2Na+,由晶胞结构可知,位于顶点和面心的硒离子个数为8×+6×=4,则每个晶胞中含有4个Na2Se,转移电子数为8,故B正确;
C.由题意可知,Cu2-xSe转化为NaCuSe的电极反应式为Cu2-xSe+ e-+Na+=NaCuSe+(1-x)Cu,由晶胞结构可知,位于顶点和面心的硒离子个数为8×+6×=4,则每个晶胞中含有4个NaCuSe,晶胞中0价铜而个数为(4-4x),故C错误;
D.由题意可知,NayCu2-xSe转化为NaCuSe的电极反应式为NayCu2-xSe+(1-y) e-+(1-y) Na+=NaCuSe+(1-x)Cu,所以每转移(1-y)电子,产生(1-x)mol铜,故D正确;
故选BD。
14.AB
【详解】A.配制100mL一定物质的量浓度的NaCl溶液的步骤为:计算、称量、溶解、转移、洗涤、定容、摇匀等,需要的仪器有:托盘天平、药匙、烧杯、量筒、玻璃棒、100mL容量瓶、胶头滴管等,选项中所选玻璃仪器和试剂均准确,A符合题意;
B.往烧杯中加入适量蒸馏水并加热至沸腾,向沸水滴加几滴饱和氯化铁溶液,继续煮沸至溶液呈红褐色停止加热,得到氢氧化铁胶体,所选玻璃仪器和试剂均准确,B符合题意;
C.用标准稀盐酸溶液滴定待测氢氧化钠溶液可测定出氢氧化钠的浓度,取待测液时需选取碱式滴定管,酸式滴定管则盛装标准盐酸溶液,所以所选仪器还应有碱式滴定管,C不符合题意;
D.制备乙酸乙酯时需要用浓硫酸作催化剂和吸水剂,所选试剂中缺少浓硫酸,D不符合题意;
故选AB。
15.CD
【分析】向H3RCl2溶液中滴加NaOH溶液,依次发生离子反应:、、,溶液中逐渐减小,和先增大后减小,逐渐增大。,,,M点,由此可知,N点,则,P点,则。
【详解】A.,,因此,故A错误;
B.M点存在电荷守恒:,此时,因此,故B错误;
C.O点,因此,即,因此,溶液,故C正确;
D.P点溶质为NaCl、HR、NaR,此时溶液呈碱性,因此,溶质浓度大于水解和电离所产生微粒浓度,因此,故D正确;
综上所述,正确的是CD,故答案为CD。
16.AD
【分析】根据图象分析可知该加成反应为放热反应,且生成的1,4-加成产物的能量比1,2-加成产物的能量低,结合题干信息及温度对化学反应速率与化学平衡的影响效果分析作答。
【详解】根据上述分析可知,
A. 能量越低越稳定,根据图象可看出,1,4-加成产物的能量比1,2-加成产物的能量低,即1,4-加成产物的能量比1,2-加成产物稳定,故A正确;
B. 该加成反应不管生成1,4-加成产物还是1,2-加成产物,均为放热反应,则升高温度,不利用1,3-丁二烯的转化,即在40时其转化率会减小,故B错误;
C. 从0升至40,正化学反应速率均增大,即1,4-加成和1,2-加成反应的正速率均会增大,故C错误;
D. 从0升至40,对于1,2-加成反应来说,化学平衡向逆向移动,即1,2-加成正反应速率的增大程度小于其逆反应速率的增大程度,故D正确;
答案选AD。
17.BC
【分析】根据图象分析可知,随着pH的升高,氢氧根离子和醋酸根离子浓度增大,氢离子和醋酸离子浓度减小,又pH=7的时候,氢氧根离子浓度等于氢离子浓度,故可推知,图中各曲线代表的浓度分别是:曲线1为lgc(CH3COO-)随pH的变化曲线,曲线2为lgc(H+)随pH的变化曲线,曲线3为lgc(OH-)随pH的变化曲线,曲线4为lgc(CH3COOH)随pH的变化曲线,据此结合水溶液的平衡分析作答。
【详解】A. 根据上述分析可知,O点为曲线2和曲线3的交点,对应的pH=7,应该得出的结论为:c(H+)= c(OH-),故A错误;
B. N点为曲线1和曲线4的交点, lgc(CH3COO-)=lgc(CH3COOH),即c(CH3COO-)=c(CH3COOH),因Ka=,代入等量关系并变形可知pH=-lgKa,故B正确;
C. c(CH3COO-)+c(CH3COOH)=0.1mol/L,则c(CH3COO-)=0.1mol/L- c(CH3COOH),又Ka=,联立两式消去c(CH3COO-)并化简整理可得出,c(CH3COOH)=mol/L,故C正确;
D. 醋酸根离子的水解平衡为:CH3COO-+H2O CH3COOH +OH-,pH由7到14的变化过程中,碱性不断增强,c(OH-)不断增大,则使不利于醋酸根离子的水解平衡,会使其水解程度减小,故D错误;
答案选BC。
18. 排除装置中的空气 直形冷凝管 不再有水凝结 吸收多余氯气,防止污染空气;防止空气中的水蒸气进入E 再次通入N2 排除装置中的H2 ( m3+m1-2m2) % 不变 偏大
【分析】(1) 将WO3在加热条件下用H2还原为W,为防止空气干扰,还原WO3之前要除去装置中的空气;
(2) 由信息可知WCl6极易水解,W与Cl2反应制取WCl6时,要在B处加装盛有碱石灰的干燥管,防止空气中的水蒸气进入E中;
(3)利用碘量法测定WCl6产品纯度,称量时加入足量的CS2用于溶解样品,盖紧称重为m1g,由于CS2易挥发,开盖时要挥发出来,称量的质量要减少,开盖并计时1分钟,盖紧称重m2g,则挥发出的CS2的质量为(m1- m2)g,再开盖加入待测样品并计时1分钟,又挥发出(m1- m2)g的CS2,盖紧称重为m3g,则样品质量为:m3g+2(m1- m2)g-m1g=( m3+m1- 2m2)g;滴定时,利用关系式:WO~2IO~6I2~12 S2O计算样品中含WCl6的质量,进而计算样品中WCl6的质量分数;根据测定原理分析是否存在误差及误差是偏大还是偏小。
【详解】(1)用H2还原WO3制备W,装置中不能有空气,所以先通N2,其目的是排除装置中的空气;由仪器构造可知仪器A的名称为直形冷凝管;当WO3被完全还原后,不再有水生成,则可观察到的现象为锥形瓶中不再有液滴滴下,即不再有水凝结。故答案为:不再有水凝结;
(2) 由信息可知WCl6极易水解,W与Cl2反应制取WCl6时,要在B处加装盛有碱石灰的干燥管,防止空气中的水蒸气进入E中,所以碱石灰的作用其一是吸收多余氯气,防止污染空气;其二是防止空气中的水蒸气进入E;在操作⑤加热,通Cl2之前,装置中有多余的H2,需要除去,所以操作④是再次通入N2,目的是排除装置中的H2,故答案为:吸收多余氯气,防止污染空气;防止空气中的水蒸气进入E;再次通入N2;排除装置中的H2;
(3) ①根据分析,称量时加入足量的CS2,盖紧称重为m1g,由于CS2易挥发,开盖时要挥发出来,称量的质量要减少,开盖并计时1分钟,盖紧称重m2g,则挥发出的CS2的质量为(m1- m2)g,再开盖加入待测样品并计时1分钟,又挥发出(m1- m2)g的CS2,盖紧称重为m3g,则样品质量为:m3g-m1g+2(m1- m2)g=( m3+m1- 2m2)g,故答案为:( m3+m1- 2m2);
②滴定时,根据关系式:WO~2IO~6I2~12 S2O,样品中n(WCl6)=n(WO)=n(S2O)=cV10-3mol,m(WCl6)=cV10-3molMg/mol=g,则样品中WCl6的质量分数为:100%=%;根据测定原理,称量时,若加入待测样品后,开盖时间超过1分钟,挥发的CS2的质量增大,m3偏小,但WCl6的质量不变,则滴定时消耗Na2S2O3溶液的体积将不变,样品中WCl6质量分数的测定值将偏大,故答案为:%;不变;偏大。
19. 平衡气压,使浓盐酸顺利滴下; NaOH溶液 在装置A、B之间加装盛有饱和食盐水的洗气瓶 酸式 C BD
【分析】漂白粉的有效成分Ca(ClO)2具有强氧化性,和浓盐酸在A中发生归中反应产生Cl2,Cl2和K2MnO4在B中反应产生KMnO4,反应不完的Cl2用C吸收,据此解答。
【详解】(1)装置A为恒压分液漏斗,它的作用是平衡气压,使浓盐酸顺利滴下,C的作用是吸收反应不完的Cl2,可用NaOH溶液吸收,Ca(ClO)2和浓盐酸在A中发生归中反应产生Cl2,反应的化学方程式为Ca(ClO)2+4HCl=CaCl2+2Cl2↑+2H2O,故答案为:平衡气压,使浓盐酸顺利滴下;NaOH溶液;Ca(ClO)2+4HCl=CaCl2+2Cl2↑+2H2O;
(2)锰酸钾在浓强碱溶液中可稳定存在,碱性减弱时易发生3MnO42-+2H2O=2MnO4-+MnO2↓+4OH-,一部分MnO42-转化为了MnO2,导致最终KMnO4的产率低,而浓盐酸易挥发,直接导致B中NaOH溶液的浓度减小,故改进措施是在装置A、B之间加装盛有饱和食盐水的洗气瓶吸收挥发出来的HCl,故答案为:在装置A、B之间加装盛有饱和食盐水的洗气瓶;
(3)高锰酸钾有强氧化性,强氧化性溶液加入酸式滴定管,滴定管的“0”刻度在上,规格为50.00mL的滴定管中实际的体积大于(50.00-15.00)mL,即大于35.00mL,故答案为:酸式;C;
(4)设FeC2O4·2H2O的物质的量为xmol,Fe2(C2O4)3的物质的量为ymol,H2C2O4·2H2O的物质的量为zmol,步骤I中草酸根和Fe2+均被氧化,结合得失电子守恒有:2KMnO4~5H2C2O4(C2O42-),KMnO4~5Fe2+,所以,步骤II中Fe2+被氧化,由KMnO4~5Fe2+可知,,联立二个方程解得:z=2.5c(V1-3V2)×10-3,所以H2C2O4·2H2O的质量分数==。关于样品组成分析如下:
A.时,H2C2O4·2H2O的质量分数==0,样品中不含H2C2O4·2H2O,由和可知,y≠0,样品中含Fe2(C2O4)3杂质,A错误;
B.越大,由H2C2O4·2H2O的质量分数表达式可知,其含量一定越大,B正确;
C.Fe元素的物质的量=,若步骤I中KMnO4溶液不足,则步骤I中有一部分Fe2+没有被氧化,不影响V2的大小,则不变,则对于测得Fe元素的含量无影响,C错误;
D.结合C可知:若KMnO4溶液浓度偏低,则消耗KMnO4溶液的体积V1、V2均偏大,Fe元素的物质的量偏大,则测得样品中Fe元素含量偏高,D正确;
故答案为:;BD。
20.(1)6HF+SiO2=2H+++2H2O
(2)
(3) CaSO4 0.5H2O 抑制CaSO4的溶解,提高产品石膏的产率 酸解 AD
【分析】氟磷灰石用硫酸溶解后过滤,得到粗磷酸和滤渣,滤渣经洗涤后结晶转化为石膏;粗磷酸以精制I脱氟、除硫酸根离子和,过滤,滤液经精制II等一系列操作得到磷酸。
【详解】(1)氢氟酸与SiO2反应生成二元强酸H2SiF6,该反应的离子方程式为6HF+SiO2=2H+++2H2O。
(2)精制1中,按物质的量之比n(Na2CO3):n()= 1:1加入Na2CO3脱氟,该反应的化学方程式为H2SiF6+ Na2CO3= Na2SiF6↓+CO2↑+ H2O,充分反应后得到沉淀Na2SiF6,溶液中有饱和的Na2SiF6,且c(Na+)=2c(),根据Na2SiF6的溶度积可知Ksp= c2(Na+) c()=4c3(),c() =mol L-1,因此c(Na+)=2c()=mol L-1;同时,粗磷酸中还有硫酸钙的饱和溶液,c(Ca2+)=c()=mol L-1;分批加入一定量的BaCO3,当BaSiF6沉淀开始生成时,c(Ba2+)= mol L-1,当BaSO4沉淀开始生成时,c(Ba2+)= mol L-1,因此,首先转化为沉淀的离子是,然后才是。
(3)根据图中的坐标信息,酸解后,在所得100℃、P2O5%为45的混合体系中,石膏存在形式为CaSO4 0.5H2O;CaSO4在硫酸中的溶解度小于在水中的,因此,洗涤时使用一定浓度的硫酸溶液而不使用水的原因是:减少CaSO4的溶解损失,提高产品石膏的产率;洗涤液X中含有硫酸,其具有回收利用的价值,由于酸解时使用的也是硫酸,因此,回收利用洗涤液X的操作单元是:酸解。由图甲信息可知,温度越低,越有利于实现酸解所得石膏结晶的转化,由图乙信息可知,体系温度为65℃时,位于65℃线上方的晶体全部以CaSO4 0.5H2O形式存在,位于65℃线下方的晶体全部以CaSO4 2H2O。体系温度为80℃时,位于80℃线下方的晶体全部以CaSO4 2H2O形式存在,位于80℃线上方的晶体全部以CaSO4 0.5H2O形式存在,据此分析:
A. P2O5%= l5、SO3%= 15,由图乙信息可知,该点坐标位于65℃线以下,晶体以CaSO4 2H2O形式存在,可以实现石膏晶体的转化,A符合题意;
B. P2O5%= 10、SO3%= 20,由图乙信息可知,该点坐标位于80℃线的上方,晶体全部以CaSO4 0.5H2O形式存在,故不能实现晶体的转化, B不符合题意;
C.P2O5%= 10、SO3%= 30,由图乙信息可知,该点坐标位于65℃线上方,晶体全部以CaSO4 0.5H2O形式存在,故不能实现晶体转化, C不符合题意;
D. P2O5%=10、SO3%= 10,由图乙信息可知,该点坐标位于80℃线下方,晶体全部以CaSO4 2H2O形式存在,故能实现晶体的完全转化,D符合题意;
综上所述,能实现酸解所得石膏结晶转化的是AD。
21. 增大反应物接触面积,提高化学反应速率 使平衡正向移动,提高Na2Cr2O7的产率 浸取 过度蒸发,导致Na2SO4(提早)析出
H2SO4 阳 Na+
【分析】以铬铁矿(FeCr2O4,含Al、Si氧化物等杂质)为主要原料制备红矾钠(Na2Cr2O7 2H2O)过程中,向铬铁矿中加入纯碱和O2进行焙烧,FeCr2O4转化为Na2CrO4,Fe(II)被O2氧化成Fe2O3,Al、Si氧化物转化为NaAlO2、Na2SiO3,加入水进行“浸取”,Fe2O3不溶于水,过滤后向溶液中加入H2SO4调节溶液pH使、转化为沉淀过滤除去,再向滤液中加入H2SO4,将Na2CrO4转化为Na2Cr2O7,将溶液蒸发结晶将Na2SO4除去,所得溶液冷却结晶得到Na2Cr2O7 2H2O晶体,母液中还含有大量H2SO4。据此解答。
【详解】(1)焙烧时气体与矿料逆流而行,目的是利用热量使O2向上流动,增大固体与气体的接触面积,提高化学反应速率,故答案为:增大反应物接触面积,提高化学反应速率。
(2)中和时调节溶液pH目的是将、转化为沉淀过滤除去,由图可知,当溶液pH≥4.5时,Al3+除尽,当溶液pH>9.3时,H2SiO3会再溶解生成,因此中和时pH的理论范围为;将Al元素和Si元素除去后,溶液中Cr元素主要以和存在,溶液中存在平衡:,降低溶液pH,平衡正向移动,可提高Na2Cr2O7的产率;由上述分析可知,Fe元素在“浸取”操作中除去,故答案为:;使平衡正向移动,提高Na2Cr2O7的产率;浸取。
(3)蒸发结晶时,过度蒸发会导致Na2SO4(提早)析出。
(4)由4Na2CrO4+4H2O2Na2Cr2O7+4NaOH+2H2↑+O2↑可知,电解过程中实质是电解水,阳极上水失去电子生成H+和O2,阴极上H+得到电子生成H2,由可知,在氢离子浓度较大的电极室中制得,即Na2Cr2O7在阳极室产生;电解过程中,阴极产生氢氧根离子,氢氧化钠在阴极生成,所以为提高制备Na2Cr2O7的效率,Na+通过离子交换膜移向阴极,故答案为:阳;Na+。
22. 增大接触面积,充分反应,提高反应速率: 过量的MnO2消耗了产生的Ba(OH)2 蒸发 H2O2 4.9
【分析】软锰矿粉(主要成分为MnO2,含少量Fe3O4、Al2O3)加入硫化钡溶液进行反应,主要发生MnO2+BaS+H2O=Ba(OH)2+MnO+S,过滤得到Ba(OH)2溶液,经蒸发结晶、过滤、干燥得到氢氧化钡;滤渣用硫酸溶解,得到的滤液中主要金属阳离子有Mn2+、Fe2+、Fe3+、Al3+,得到的滤渣为不溶于稀硫酸的硫磺;之后向滤液中加入合适的氧化剂将Fe2+转化为Fe3+,然后加入氨水调节pH,使Fe3+、Al3+转化为沉淀除去,压滤得到的废渣为Fe(OH)3和Al(OH)3,此时滤液中的金属阳离子只有Mn2+,向滤液中加入碳酸氢铵、氨水,Mn2+和碳酸氢根电离出的碳酸根结合生成碳酸锰沉淀,过滤、洗涤、干燥得到高纯碳酸锰。
【详解】(1)软锰矿预先粉碎可以增大反应物的接触面积,使反应更充分,提高反应速率;MnO2与BaS反应转化为MnO,Mn元素的化合价由+4价降低为+2价,根据元素价态规律可知-2价的S元素应被氧化得到S单质,则MnO2与BaS的系数比应为1:1,根据后续流程可知产物还有Ba(OH)2,结合元素守恒可得化学方程式为:MnO2+BaS+H2O=Ba(OH)2+MnO+S;
(2)根据题目信息可知MnO2为两性氧化物,所以当MnO2过量时,会消耗反应产生的Ba(OH)2,从而使Ba(OH)2的量达到最大值后会减小;
(3)滤液I为结晶后剩余的Ba(OH)2饱和溶液,所以可以导入到蒸发操作中循环使用;
(4)净化时更好的除去Fe元素需要将Fe2+氧化为Fe3+,为了不引入新的杂质,且不将Mn元素氧化,加入的试剂X可以是H2O2;根据表格数据可知,Fe(OH)3和Al(OH)3为同类型的沉淀,而Al(OH)3的Ksp稍大,所以当Al3+完全沉淀时,Fe3+也一定完全沉淀,当c(Al3+)=1.0×10-5mol/L时,c(OHˉ)==10-9.1mol/L,所以c(H+)=10-4.9mol/L,pH=4.9,即pH的理论最小值为4.9;
(5)碳化过程Mn2+和碳酸氢根电离出的碳酸根结合生成碳酸锰沉淀,促进碳酸氢根的电离,产生的氢离子和一水合氨反应生成铵根和水,所以离子方程式为Mn2++HCO+NH3·H2O=MnCO3↓+NH+H2O。
23.(1)-200(X+Y)
(2) a或c 8.3×10-8 0.08 39%
(3) c 由于b和c代表的温度相同,而压强对反应速率的影响可忽略,压强增大反应Ⅱ、Ⅲ均是逆向移动,增大,故=1.0所需时间更长
【详解】(1)依题意,结合已知信息,可推定在同温同压下,以同物质的量的BL或BD为初始原料,达到平衡时的状态相同,两个平衡完全等效。则以5.0×10-3mol的BL为原料,达到平衡时放出XkJ热量与同物质的量的BD为原料达到平衡时吸收YkJ热量的能量二者能量差值为(X+Y)kJ,则1mol时二者能量和为200(X+Y)kJ,反应I为放热反应,因此焓变=-200(X+Y)kJ·mol-1。
(2)实验测定X(3)依题意,反应I是正向放热过程,以BL为初始原料,温度升高则平衡逆向移动,温度越高,反应速率越快,达到平衡时的时间越短,越小,的值越大;相同温度时,压强增大,BD的比重增大,增大,又可忽略压强对反应速率的影响,则最大即最小,对应曲线c;由于b和c代表的温度相同,而压强对反应速率的影响可忽略,压强增大反应Ⅱ、Ⅲ均是逆向移动,增大,故=1.0所需时间更长。
24. 2-甲基-2-丁烯 D 0.9α 逆向移动 1:10 X <
【详解】(1)由平衡常数Kx与温度T变化关系曲线可知,反应Ⅰ、Ⅱ、Ⅲ的平衡常数的自然对数随温度升高(要注意横坐标为温度的倒数)而减小,说明3个反应均为放热反应,即△H1<0、△H2<0、△H3<0,因此,A的总能量高于B的总能量,能量越低越稳定,A和B中相对稳定的是B,其用系统命名法命名为2-甲基-2-丁烯;由盖斯定律可知,Ⅰ-Ⅱ=Ⅲ,则△H1-△H2=△H3<0,因此△H1<△H2,由于放热反应的△H越小,其绝对值越大,则的数值范围是大于1,选D。
(2)向某反应容器中加入1.0molTAME,控制温度为353K,测得TAME的平衡转化率为α,则平衡时n(TAME)=(1-α) mol,n(A)+n(B)=n(CH3OH)= α mol。已知反应Ⅲ的平衡常数Kx3=9.0,则=9.0,将该式代入上式可以求出平衡体系中B的物质的量为0.9α mol,n(A)=0.1α mol,反应Ⅰ的平衡常数Kx1=。同温同压下,再向该容器中注入惰性溶剂四氢呋喃稀释,反应Ⅰ的化学平衡将向着分子数增大的方向移动,即逆向移动。平衡时,TAME的转化率变大,但是平衡常数不变,A与CH3OH物质的量浓度之比不变,c(A):c(CH3OH)=0.1α:α=1:10。
(3)温度为353K,反应Ⅲ的平衡常数Kx3=9.0,=9.0。由A、B物质的量浓度c随反应时间t的变化曲线可知,X代表的平衡浓度高于Y,则代表B的变化曲线为X;由母线的变化趋势可知,100s 以后各组分的浓度仍在变化, t=100s时,因此,反应Ⅲ正在向逆反应方向移动,故其正反应速率v正小于逆反应速率v逆,填<。
25. +43.9 乙 p1、p2、p3 T1时以反应Ⅲ为主,反应Ⅲ前后气体分子数相等,压强改变对平衡没有影响 A
【分析】根据盖斯定律计算反应热;利用三个反应,进行浓度和化学平衡常数的计算;结合图形根据勒夏特列原理考虑平衡移动的方向,确定温度和压强变化时,CO2的平衡转化率和CH3OH的平衡产率之间的关系得到相应的答案。
【详解】(1).根据反应I-II=III,则△H3=△H1-△H2=-48.5kJ mol-1-(-92.4 kJ mol-1)=+43.9 kJ mol-1;
(2).假设反应II中,CO反应了xmol,则II生成的CH3OH为xmol,I生成的CH3OH为(a-x)mol,III生成CO为(b+x)mol,根据反应I:,反应II: ,反应III:,所以平衡时H2的物质的量为3mol-3(a-x)mol-2xmol-(b+x)mol =(3-3a-b)mol,浓度为:;平衡时CO2的物质的量为1mol-(a-x)mol-(b+x)mol=(1-a-b)mol,CO的物质的量为bmol,水的物质的量为(a+b)mol,则反应III的平衡常数为:;
(3).反应I和II为放热反应,升高温度,平衡逆向移动,则CH3OH的平衡产率减少,所以图甲表示CH3OH的平衡产率,图乙中,开始升高温度,由于反应I和II为放热反应,升高温度,平衡逆向移动,CO2的平衡转化率降低,反应III为吸热反应,升高温度反应III向正反应方向移动,升高一定温度后以反应III为主,CO2的平衡转化率又升高,所以图乙表示CO2的平衡转化率;压强增大,反应I和II是气体体积减小的反应,反应I和II平衡正向移动,反应III气体体积不变化,平衡不移动,故压强增大CH3OH的平衡产率增大,根据图所以压强关系为:p1>p2>p3;温度升高,反应I和II平衡逆向移动,反应III向正反应方向移动,所以T1温度时,三条曲线交与一点的原因为:T1时以反应III为主,反应III前后分子数相等,压强改变对平衡没有影响;
(4).根据图示可知,温度越低,CO2的平衡转化率越大,CH3OH的平衡产率越大,压强越大,CO2的平衡转化率越大,CH3OH的平衡产率越大,所以选择低温和高压,答案选A。
【点睛】本题为化学反应原理综合题,考查了盖斯定律、化学平衡常数的计算、勒夏特列原理进行图象的分析,难点为平衡常数的计算,巧用了三个反应的化学方程式,进行了数据的处理,得到反应III的各项数据,进行计算得到平衡常数。
答案第18页,共18页
答案第17页,共18页