中小学教育资源及组卷应用平台
第五单元解决问题的策略易错点测试卷(单元测试)-小学数学四年级下册苏教版
一、选择题
1.学校运动会上,四年级同学组成3个表演方阵,每个方阵6行,每行6人。最外面一圈的学生穿红色表演服,其余学生穿黄色表演服,穿红色表演服的有( )人。
A.108 B.72 C.48 D.60
2.把一些长20厘米、宽16厘米的长方形纸片按下图所示的方法摆一摆,摆10层后形成的图形的周长是( )厘米。
A.360 B.720 C.1080 D.520
3.张阿姨买一套衣服用了88元,上衣比裤子贵12元,上衣( )元。
A.50 B.38 C.76 D.100
4.如图,设〇、△、□分别表示三种不同的物体,左边两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放□的个数为( )。
A.5 B.4 C.3 D.2
5.给一块长方形菜地围上篱笆,篱笆总长80米,菜地的长边比短边长10米,长边是( )米。
A.10 B.15 C.25 D.35
6.小明在文具店买了三种学习用品,分别是钢笔、笔记本和文具盒。其中钢笔最贵,花了20元;笔记本最便宜,花了10元。请你估一估,这三件商品的总价在( )元。
A.20~30 B.30~40 C.40~50 D.50~60
二、填空题
7.一个长方形的长是8米,宽是6米,长增加3米,面积就增加( )平方米。
8.足球和篮球一共有142个,篮球比足球少26个,篮球有( )个,足球有( )个。
9.在停车场停有自行车和三轮车共20辆,两种车的车轮共有45个。停车场里停的三轮车有( )辆,自行车有( )辆。
10.运动会开幕式上,“花环”队同学在操场上排成方队表演,每行7人,有7行,“花环”方队最外边一圈有( )人。
11.甲、乙两个书架上共有图书450本,如果从甲书架上取50本图书放到乙书架上,两个书架的图书就同样多了。甲书架上原来有图书( )书,乙书架上原来有图书( )本。
12.今年爸爸比乐乐大30岁,4年后,爸爸的年龄是乐乐的4倍。今年爸爸( )岁,乐乐( )岁。
13.同学们在试验田种葫芦和玉米,种葫芦的面积比试验田面积的一半还多8平方米,剩下的17平方米种玉米,种葫芦的面积是( )平方米。
14.一个时钟6时整敲6下,10秒敲完,请你想一想,这个钟敲12下,需要( )秒。
三、判断题
15.今年爸爸的年龄是红红的 6 倍。明年爸爸的年龄还是红红的6倍。( )
16.一套课桌椅共60元,课桌的单价是椅子的2倍,课桌的单价为40元. ( )
17.甲乙两人的邮票数同样多,如果甲给乙18张后,甲比乙少36张。 ( )
18.长方形的长增加3厘米,宽减少3厘米,长方形的面积不变。 ( )
19.买同样的练习本,哥哥比妹妹多买了8本,多花了16元,那么一本练习本2元( )。
四、计算题
20.看图列式。
五、解答题
21.四年级同学六一儿童节举行队列表演,共组成6个方队,每个方队排成4行,每行4人,每个方阵最外圈的同学穿红色衣服,其余同学穿蓝色衣服,问两种衣服分别要准备多少套?
22.王大伯家养了96只鹅,鸭的只数比鹅少24只,养的鸡的只数是鹅、鸭总数的3倍。王大伯家养了多少只鸡?
23.修一条长1500米的路,已经修了3天,平均每天修240米,还剩多少米没有修?
24.张伯伯家原来有一个长方形鱼塘,宽30米(如下图)。为扩大养殖规模,把鱼塘的宽增加12米,这样面积就增加了720平方米。原来鱼塘的面积是多少平方米?(先画图表示出条件和问题,再解答)
25.刘爷爷在山林里养了360只鸡,其中母鸡比公鸡多48只。刘爷爷养的公鸡和母鸡各有多少只?先根据题意把线段图补充完整,再解答。)
26.一辆货车和一辆客车从两地沿着公路同时出发,相向而行,客车的速度是80千米每小时,货车的速度是40千米每小时,两小时后两车第二次相距30千米,这条公路长多少千米?(画出示意图再解答)
参考答案:
1.D
【分析】每行人数减1,再乘4等于方阵最外面一圈的人数,再乘方阵个数即可解答。
【详解】(6-1)×4×3
=5×4×3
=20×3
=60(人)
故答案为:D
【点睛】明确方阵最外面一圈的人数等于每行人数减1的差乘4是解答本题的关键。
2.B
【分析】一层有一个长方形,周长是2个宽与2个长的和,即1个长方形的周长。两层有3个长方形,周长是4个宽与4个长的和,即2个长方形的周长。三层有6个长方形,周长是6个宽与6个长的和,即3个长方形的周长。据此可知,摆几层,周长就是几个长方形的周长。据此解答。
【详解】(20+16)×2×10
=36×2×10
=72×10
=720(厘米)
则摆10层后形成的图形的周长是720厘米。
故答案为:B
【点睛】本题先根据已知图形明确摆的层数与图形周长之间的关系,再根据这个关系解决问题。
3.A
【分析】可用和差问题公式“(和+差)÷2=大数,(和-差)÷2=小数”解答。
【详解】上衣:(88+12)÷2
=100÷2
=50(元)
故答案为:A
【点睛】分析题中数量之间的关系,根据数量之间的关系解决问题。
4.A
【分析】观察第一架天平可知:2个○的质量等于1个△加上1个□的质量,再观察第二架天平可知: 1个△的质量等于1个○加上1个□的质量。那么2个○的质量等于1个○加上2个□的质量;2个□的质量应该等于1个○的质量,1个△的质量应该等于3个□的质量;据此代入第三架天平1个○和1个△中,求出“?”处应放□的个数。
【详解】由图可知:
2个〇=△+□,1个△=○+□,因此○=2个□,△=3个□,所以○+△=2个□+3个□=5个□。
故答案为:A
【点睛】本题考查了等量代换,找出△、○、□三者之间的关系,是解答此题的关键。
5.C
【分析】菜地长加宽的和为80÷2=40米,40加10的和除以2等于长边,据此即可解答。
【详解】(80÷2+10)÷2
=50÷2
=25(米)
故答案为:C
【点睛】先计算出长加宽的和,再根据和差问题解题方法进行解答。
6.C
【分析】钢笔和笔记本一共花了20+10=30元,文具盒的价钱大于10元,小于20元,所以钢笔、笔记本和文具盒三件商品的总价大于30+10=40元,小于30+20=50元,据此即可解答。
【详解】根据分析可知,钢笔、笔记本和文具盒三件商品的总价大于40元,小于50元。
故答案为:C
【点睛】估出文具盒的价钱是解答本题的关键。
7.18
【分析】长方形的面积=长×宽,据此求出增加前后的面积,再相减即可。
【详解】增加前的面积:8×6=48(平方米)
增加后的面积:
(8+3)×6
=11×6
=66(平方米)
增加的面积是:66-48=18(平方米)
【点睛】本题考查的是对长方形面积公式的掌握与运用,也可以直接用增加的长×宽求解。
8. 58 84
【分析】用足球和篮球一共有的个数减去篮球比足球少的个数,得出篮球的个数,再用篮球和足球的总个数减去篮球的个数,得出足球的个数。
【详解】(142-26)÷2
=116÷2
=58(个)
142-58=84(个)
【点睛】本题主要考查和差的问题的知识运用。
9. 5 15
【分析】假设20辆都是三轮车,共有3×20=60(个)车轮,多出60-45=15(个)车轮,每辆自行车比三轮车少3-2=1(个)车轮,所以自行车有15÷1=15(辆),三轮车有20-15=5(辆)。
【详解】(3×20-45)÷(3-2)
=15÷1
=15(辆)
20-15=5(辆)
【点睛】本题主要考查学生对鸡兔同笼问题解题方法的掌握和灵活运用。
10.24
【分析】由方阵问题计算公式:四周人数=(每边人数-1)×4,代入数据即可解答。
【详解】(7-1)×4
=6×4
=24(人)
【点睛】本题考查了方阵的相关问题,解答时应看清问题,熟记公式。
11. 275 175
【分析】由题意可得,甲书架上取50本图书放到乙书架上,两个书架的图书就同样多了,则甲书架比乙书架多:50×2=100本;再根据线段图进行计算即可。
【详解】
(450-50×2)÷2
=(450-100)÷2
=350÷2
=175(本)
450-175=275(本)
【点睛】此题考查了和差问题的应用,关键是画出线段图即可。
12. 6 36
【分析】把4年后乐乐的年龄看作1份,4年后爸爸的年龄就是4份,爸爸比乐乐多4-1=3份,爸爸比乐乐多30岁,30除以3等于乐乐4年后的年龄,减去4,等于乐乐今年的年龄,再加30就等于爸爸今年的年龄。
【详解】30÷(4-1)-4
=10-4
=6(岁)
6+30=36(岁)
【点睛】熟练掌握倍差问题解题方法是解答本题的关键。
13.33
【分析】种葫芦的面积比试验田面积的一半还多8平方米,说明种玉米的面积比一半少8平方米,所以17平方米加8平方米等于试验田面积的一半,再加8平方米就等于种葫芦的面积。
【详解】17+8×2
=17+16
=33(平方米)
【点睛】首先要分析清楚试验田面积的一半是多少,再作进一步解答。
14.22
【分析】敲6下有5个间隔,每个间隔时长10÷5=2秒,12下有11个间隔,要2×11=22秒。
【详解】10÷(6-1)×(12-1)
=2×11
=22(秒)
【点睛】先求出敲两下之间的间隔是多长时间,然后再作进一步解答。
15.×
【详解】略
16.√
【解析】略
17.√
【详解】甲给乙18张之后,甲少了18张,乙多了18张,因为开始甲乙两人的邮票数同样多,所以甲比乙少:18+18=36(张)。
故答案为:√
【点睛】考察了和差倍问题的简单应用。
18.×
【详解】略
19.√
【详解】略
20.五年级41棵;六年级65棵
【分析】观察上图可知,六年级植树棵数比五年级多24棵,两个年级共植树106棵,用106减24的差,再除以2等于五年级植树的棵数,五年级植树的棵数加24等于六年级植树棵数,据此即可解答。
【详解】(106-24)÷2
=82÷2
=41(棵)
41+24=65(棵)
21.红色衣服准备72套,蓝色衣服准备24套
【分析】每个方队排成4行,每行4人,则每个方队外圈的人数是(4-1)×4人,内圈人数是(4-2)×(4-2)人。用每个方队外圈人数乘6,求出准备红色衣服数量。用每个方队内圈人数乘6,求出准备蓝色衣服数量。
【详解】(4-1)×4×6
=3×4×6
=12×6
=72(套)
(4-2)×(4-2)×6
=2×2×6
=4×6
=24(套)
答:红色衣服准备72套,蓝色衣服准备24套。
【点睛】本题考查方阵问题,外圈人数=(每行人数-1)×4,内圈人数=(每行人数-2)×(每行人数-2)。
22.504只
【分析】根据题意可知,鹅的只数减24等于鸭的只数,鹅、鸭的只数和乘3等于鸡的只数,据此即可解答。
【详解】96-24=72(只)
(96+72)×3
=168×3
=504(只)
答:王大伯家养了504只鸡。
【点睛】分析清楚鸡、鸭、鹅之间的数量关系是解答本题的关键。
23.780米
【分析】根据题意还剩多少米没修,应该用减法,用总长度减去已经修好的。每天修240米,已经修了3天,求修了多少应该用乘法。据此进行解答。
【详解】1500-240×3
=1500-720
=780(米)
答:还剩780米没有修。
【点睛】本题主要考查乘法在生活中的应用,如何将生活中的问题转换成数学问题是解答此题的关键。
24.1800平方米
【分析】根据题意可知,用增加的面积除以增加的宽,求出鱼塘原来的长,根据长方形的面积=长×宽,把数据代入解答即可。
【详解】
720÷12=60(米)
60×30=1800(平方米)
答:原来鱼塘的面积是1800平方米。
【点睛】此题主要考查长方形面积公式的灵活运用,关键是熟记公式。
25.公鸡156只;母鸡204只。
【分析】公鸡和母鸡的总只数是360只,母鸡比公鸡多48只,把公鸡加上48只,则公鸡和母鸡一样多,公鸡和母鸡的总只数也增加48只,是(360+48)只,用(360+48)除以2即是母鸡只数,再用母鸡只数减去48即是公鸡只数。
【详解】
(360+48)÷2
=408÷2
=204(只)
204-48=156(只)
答:公鸡有156只,母鸡有204只。
【点睛】此题考查的是和差问题,解题关键是理解(和+差)÷2=大数,(和-差)÷2=小数。
26.210千米
【分析】这两辆车相向而行,第一次相距30千米时是两辆车第一次相遇前,第一次相遇时,两车行驶总路程是这条公路的长度。此时货车和客车继续向前行驶,经过一段时间,两辆车相距30千米,此时两辆车行驶的总路程比这条公路的长度长30千米。用两辆车的速度和乘行驶时间,求出行驶总路程,再减去30千米,求出这条公路的长度。
【详解】
(80+40)×2-30
=120×2-30
=240-30
=210(千米)
答:这条公路长210千米。
【点睛】本题考查行程问题,利用画线段图的方法更能很好理解题意,关键是明确第二次相距30千米时两辆车行驶总路程与公路长度之间的关系。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)