人教课标A版数学必修3第三章 第1节 随机事件的概率 第1课时 学案(含答案)

文档属性

名称 人教课标A版数学必修3第三章 第1节 随机事件的概率 第1课时 学案(含答案)
格式 doc
文件大小 158.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2023-03-22 17:19:19

图片预览

文档简介

一、知识点:
1、事件的概念与分类:
事件
2、频数与频率:
在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
3、概率:
(1)含义:概率是度量随机事件发生的可能性大小的量.
(2)频率与概率有什么区别与联系
频率 概率
区别 频率反映了一个随机事件发生的频繁程度,是随机的 概率是一个确定的值,它反映随机事件发生的可能性的大小
联系 频率是概率的估计值,随着试验次数的增加,频率会越来越接近概率
二、典例讲解:
例1.指出下列事件是必然事件、不可能事件还是随机事件:
(1)中国体操运动员将在下届奥运会上获得全能冠军.
(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯.
(3)若x∈R,则x2+1≥1.
(4)掷一枚骰子两次,朝上面的数字之和小于2.
变式1.(2016·西南师大附中检测)下列事件:①一个口袋内装有5个红球,从中任取一球是红球;②掷两枚骰子,所得点数之和为9;③x2≥0(x∈R);④方程x2-3x+5=0有两个不相等的实数根;⑤巴西足球队会在下届世界杯足球赛中夺得冠军,其中随机事件的个数为(  )
A.1 B.2 C.3 D.4
例2.某射击运动员进行飞碟射击训练,七次训练的成绩记录如下:
射击次数n 100 120 150 100 150 160 150
击中飞碟数nA 81 95 120 81 119 127 121
击中飞碟的频率
(1)计算表中击中飞碟的频率.(保留三位小数)
(2)该射击运动员击中飞碟的概率约为多少?
变式2.国家乒乓球比赛的用球有严格标准,下面是有关部门对某乒乓球生产企业某批次产品的抽样检测,结果如表所示:
抽取球数目 50 100 200 500 1 000 2 000
优等品数目 45 92 194 470 954 1 902
优等品频率
(1)计算表中优等品的各个频率.
(2)从这批产品中任取一个乒乓球,质量检测为优等品的概率约是多少?
例3.某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果;
(2)写出“第一次取出的小球上的标号为2”这一事件.
变式3.袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和结果.
(1)从中任取1球;
(2)从中任取2球.
[学业水平达标练]
题组1 事件的分类
1.下列事件中,是随机事件的有(  )
①在一条公路上,交警记录某一小时通过的汽车超过300辆;
②若a为整数,则a+1为整数;
③发射一颗炮弹,命中目标;
④检查流水线上一件产品是合格品还是次品.
A.1个 B.2个 C.3个 D.4个
2.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是(  )
A.3个都是正品 B.至少有1个是次品 C.3个都是次品 D.至少有1个是正品
3.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?
①如果a,b都是实数,那么a+b=b+a;
②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;
③没有水分,种子发芽;
④某电话总机在60秒内接到15次传呼;
⑤在标准大气压下,水的温度达到50 ℃时沸腾;
⑥同性电荷,相互排斥.
题组2 随机事件的频率与概率
4.(2016·洛阳检测)下列说法正确的是(  )
A.任何事件的概率总是在(0,1]之间 B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定
5.给出下列3种说法:
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是=;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是(  )A.0 B.1 C.2 D.3
6.从存放号码分别为1,2,3,…,10的卡片的盒里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:
卡片号码 1 2 3 4 5 6 7 8 9 10
取到次数 17 8 5 7 6 9 18 9 12 9
取到号码为奇数的频率为________.
7.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:
经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60分~69分;(3)60分以下.
成绩 人数
90分以上 43
80分~89分 182
70分~79分 260
60分~69分 90
50分~59分 62
50分以下 8
题组3 试验结果分析
8.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.
(1)写出这个试验的所有可能结果;
(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.
9.指出下列试验的结果:
(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;
(2)从1,3,6,10四个数中任取两个数(不重复)作差.
[能力提升综合练]
1.根据山东省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为(  )
A.374副 B.224.4副 C.不少于225副 D.不多于225副
2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的(  )
A.概率为 B.频率为 C.频率为6 D.概率接近0.6
3.(2016·深圳调研)“一名同学一次掷出3枚骰子,3枚全是6点”的事件是(  )
A.不可能事件 B.必然事件 C.可能性较大的随机事件 D.可能性较小的随机事件
4.“连续掷两枚质地均匀的骰子,记录朝上的点数”,该试验的结果共有(  )
A.6种 B.12种 C.24种 D.36种
5.(2016·济南检测)如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的是________.
6.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:
分组 频数 频率
[1.30,1.34) 4
[1.34,1.38) 25
[1.38,1.42) 30
[1.42,1.46) 29
[1.46,1.50) 10
[1.50,1.54] 2
合计 100
(1)请补充频率分布表,并画出频率分布直方图;
(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?
参考答案
一、知识点:
1、事件的概念与分类:
事件
2、频数与频率:
在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
3、概率:
(1)含义:概率是度量随机事件发生的可能性大小的量.
(2)频率与概率有什么区别与联系
频率 概率
区别 频率反映了一个随机事件发生的频繁程度,是随机的 概率是一个确定的值,它反映随机事件发生的可能性的大小
联系 频率是概率的估计值,随着试验次数的增加,频率会越来越接近概率
二、典例讲解:
例1.指出下列事件是必然事件、不可能事件还是随机事件:
(1)中国体操运动员将在下届奥运会上获得全能冠军.
(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯.
(3)若x∈R,则x2+1≥1.
(4)掷一枚骰子两次,朝上面的数字之和小于2.
[尝试解答] 由题意知(1)(2)中事件可能发生,也可能不发生,所以是随机事件;(3)中事件一定会发生,是必然事件;由于骰子朝上面的数字最小是1,两次朝上面的数字之和最小是2,不可能小于2,所以(4)中事件不可能发生,是不可能事件.
变式1.(2016·西南师大附中检测)下列事件:①一个口袋内装有5个红球,从中任取一球是红球;②掷两枚骰子,所得点数之和为9;③x2≥0(x∈R);④方程x2-3x+5=0有两个不相等的实数根;⑤巴西足球队会在下届世界杯足球赛中夺得冠军,其中随机事件的个数为(  )
A.1 B.2 C.3 D.4
解析:选B 在所给条件下,①是必然事件;②是随机事件;③是必然事件;④是不可能事件;⑤是随机事件.
例2.某射击运动员进行飞碟射击训练,七次训练的成绩记录如下:
射击次数n 100 120 150 100 150 160 150
击中飞碟数nA 81 95 120 81 119 127 121
(1)求各次击中飞碟的频率.(保留三位小数)
(2)该射击运动员击中飞碟的概率约为多少?
[尝试解答] (1)计算得各次击中飞碟的频率依次约为0.810,0.792,0.800,0.810,0.793,0.794,0.807.
(2)由于这些频率非常地接近0.800,且在它附近摆动,所以运动员击中飞碟的概率约为0.800.
变式2.国家乒乓球比赛的用球有严格标准,下面是有关部门对某乒乓球生产企业某批次产品的抽样检测,结果如表所示:
抽取球数目 50 100 200 500 1 000 2 000
优等品数目 45 92 194 470 954 1 902
优等品频率
(1)计算表中优等品的各个频率.
(2)从这批产品中任取一个乒乓球,质量检测为优等品的概率约是多少?
解:(1)如下表
抽取球数目 50 100 200 500 1 000 2 000
优等品数目 45 92 194 470 954 1 902
优等品频率 0.9 0.92 0.97 0.94 0.954 0.951
(2)根据频率与概率的关系,可以认为从这批产品中任取一个乒乓球,质量检测为优等品的概率约是0.95.
例3.某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果;
(2)写出“第一次取出的小球上的标号为2”这一事件.
[思路点拨] 根据日常生活的经验按一定的顺序逐个列出全部结果.
[尝试解答] (1)当x=1时,y=2,3,4;当x=2时,y=1,3,4;当x=3时,y=1,2,4;当x=4时,y=1,2,3.
因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).
(2)记“第一次取出的小球上的标号为2”为事件A,则A={(2,1),(2,3),(2,4)}.
变式3.袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和结果.
(1)从中任取1球;
(2)从中任取2球.
解:(1)条件为:从袋中任取1球.结果为:红、白、黄、黑4种.
(2)条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,结果为:(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑) 6种.
[学业水平达标练]
题组1 事件的分类
1.下列事件中,是随机事件的有(  )
①在一条公路上,交警记录某一小时通过的汽车超过300辆;
②若a为整数,则a+1为整数;
③发射一颗炮弹,命中目标;
④检查流水线上一件产品是合格品还是次品.
A.1个 B.2个
C.3个 D.4个
解析:选C 当a为整数时,a+1一定为整数,是必然事件,其余3个为随机事件.
2.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是(  )
A.3个都是正品 B.至少有1个是次品
C.3个都是次品 D.至少有1个是正品
解析:选D 任意抽取3件的可能情况是:3个正品;2个正品1个次品;1个正品2个次品.由于只有2个次品,不会有3个次品的情况.3 种可能的结果中,都至少有1个正品,所以至少有1个是正品是必然发生的,即必然事件应该是“至少有1个是正品”.
3.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?
①如果a,b都是实数,那么a+b=b+a;
②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;
③没有水分,种子发芽;
④某电话总机在60秒内接到15次传呼;
⑤在标准大气压下,水的温度达到50 ℃时沸腾;
⑥同性电荷,相互排斥.
解:由实数运算性质知①恒成立,是必然事件;⑥由物理知识知同性电荷相斥是必然事件,①⑥是必然事件.没有水分,种子不会发芽;标准大气压下,水的温度达到50 ℃时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出4,也可能取不到4;电话总机在60秒内可能接到15次传呼也可能不是15次.②④是随机事件.
题组2 随机事件的频率与概率
4.(2016·洛阳检测)下列说法正确的是(  )
A.任何事件的概率总是在(0,1]之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,事件发生的频率一般会稳定于概率
D.概率是随机的,在试验前不能确定
解析:选C 由概率与频率的有关概念知,C正确.
5.给出下列3种说法:
①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是=;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是(  )
A.0 B.1 C.2 D.3
解析:选A 由频率与概率之间的联系与区别知,①②③均不正确.
6.从存放号码分别为1,2,3,…,10的卡片的盒里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:
卡片号码 1 2 3 4 5 6 7 8 9 10
取到次数 17 8 5 7 6 9 18 9 12 9
取到号码为奇数的频率为________.
解析:取到奇数号码的次数为58,故取到号码为奇数的频率为=0.58.
答案:0.58
7.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:
成绩 人数
90分以上 43
80分~89分 182
70分~79分 260
60分~69分 90
50分~59分 62
50分以下 8
经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60分~69分;(3)60分以下.
解:总人数为43+182+260+90+62+8=645.
修李老师的高等数学课的学生考试成绩在90分以上,
60分~69分,60分以下的频率分别为:
≈0.067,≈0.140,≈0.109.
∴用以上信息可以估计出王小慧得分的概率情况:
(1)“得90分以上”记为事件A,则P(A)=0.067.
(2)“得60分~69分”记为事件B,则P(B)=0.140.
(3)得“60分以下”记为事件C,则P(C)=0.109.
题组3 试验结果分析
8.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.
(1)写出这个试验的所有可能结果;
(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.
解:(1)试验所有结果:a1,a2;a1,b1;a2,b1;a2,a1;b1,a1;b1,a2.共6种.
(2)事件A对应的结果为:a1,b1;a2,b1;b1,a1;b1,a2.
9.指出下列试验的结果:
(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;
(2)从1,3,6,10四个数中任取两个数(不重复)作差.
解:(1)结果:红球,白球;红球,黑球;白球,黑球.
(2)结果:1-3=-2,3-1=2,1-6=-5,6-1=5,
1-10=-9,10-1=9,3-6=-3,6-3=3,
3-10=-7,10-3=7,6-10=-4,10-6=4.
即试验的结果为:-2,2,-5,5,-9,9,-3,3,-7,7,-4,4.
[能力提升综合练]
1.根据山东省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为(  )
A.374副 B.224.4副
C.不少于225副 D.不多于225副
解析:选C 根据概率相关知识,该校近视生人数约为600×37.4%=224.4,结合实际情况,眼镜商应带眼镜数不少于225副,选C.
2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的(  )
A.概率为 B.频率为
C.频率为6 D.概率接近0.6
解析:选B 事件A={正面朝上}的概率为,因为试验的次数较少,所以事件的频率为,与概率值相差太大,并不接近.故选B.
3.(2016·深圳调研)“一名同学一次掷出3枚骰子,3枚全是6点”的事件是(  )
A.不可能事件
B.必然事件
C.可能性较大的随机事件
D.可能性较小的随机事件
解析:选D 掷出的3枚骰子全是6点,可能发生,但发生的可能性较小.
4.“连续掷两枚质地均匀的骰子,记录朝上的点数”,该试验的结果共有(  )
A.6种 B.12种
C.24种 D.36种
解析:选D 试验的全部结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3)(6,4),(6,5),(6,6),共36种.
5.(2016·济南检测)如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的是________.
解析:取了10次有9个白球,则取出白球的频率是,估计其概率约是,那么取出黑球的概率约是,因为取出白球的概率大于取出黑球的概率,所以估计袋中数量多的是白球.
答案:白球
6.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:
分组 频数
[1.30,1.34) 4
[1.34,1.38) 25
[1.38,1.42) 30
[1.42,1.46) 29
[1.46,1.50) 10
[1.50,1.54] 2
合计 100
(1)请作出频率分布表,并画出频率分布直方图;
(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?
解:(1)频率分布表如下表.
分组 频数 频率
[1.30,1.34) 4 0.04
[1.34,1.38) 25 0.25
[1.38,1.42) 30 0.30
[1.42,1.46) 29 0.29
[1.46,1.50) 10 0.10
[1.50,1.54] 2 0.02
合计 100 1.00
频率分布直方图如图所示.
(2)纤度落在[1.38,1.50)中的频数是30+29+10=69,
则纤度落在[1.38,1.50)中的频率是=0.69,
所以估计纤度落在[1.38,1.50)中的概率为0.69.
纤度小于1.40的频数是4+25+×30=44,
则纤度小于1.40的频率是=0.44,
所以估计纤度小于1.40的概率是0.44.