人教版七年级下册数学8.3二元一次方程组---分配问题训练(含简单答案)

文档属性

名称 人教版七年级下册数学8.3二元一次方程组---分配问题训练(含简单答案)
格式 docx
文件大小 82.8KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-03-27 13:16:22

图片预览

文档简介

人教版七年级下册数学8.3二元一次方程组---分配问题训练
一、单选题
1.某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为 人,组数为组,则列方程组为( )
A. B.
C. D.
2.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?若设生产螺栓x人,生产螺帽y人,则列方程组得( )
A. B.
C. D.
3.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x名工人生产镜片,y名工人生产镜架,则可列方程组( )
A. B.
C. D.
4.某工厂有26名工人,一个工人每天可加工800个螺栓或1000个螺帽,1个螺栓与2个螺帽配套,现要求工人每天加工的螺栓和螺帽完整配套且没有剩余.若设安排x个工人加工螺栓,y个工人加工螺帽,则列出正确的二元一次方程组为( )
A. B.
C. D.
5.根据市场调查,某种消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量(按瓶计算)比为2∶5.某厂每天生产这种消毒液22500000克,这些清毒液应该分装大,小瓶两种产品各多少瓶 设这些消毒液应该分装大瓶x瓶,小瓶y瓶.依题意可列方程组为( )
A. B.
C. D.
6.现采购北京冬奥会吉祥物两种大礼包,甲种礼包里面含有4个冰墩墩和1个雪容融,乙种礼包里面含有3个冰墩墩和2个雪容融,现在需要37个冰墩墩和18个雪容融,则需要采购甲种礼包的数量为( )
A.5 B.4 C.3 D.2
7.明代数学家程大位所著的《算法统宗》中有这样一道题:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排用于制作笔管或笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,可列方程组为(  )
A. B. C. D.
8.有一些苹果箱,若每个装苹果,则剩余苹果无处装,若每个装苹果.则余20个空箱,这些苹果箱有( )
A.12个 B.60个 C.112个 D.128个
二、填空题
9.某车间有名工人,每人平均每天可加工螺栓个或螺母个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设应分配x人生产螺母,y人生产螺栓,依题意列方程组得 _______.
10.一旅行团游客入住一家宾馆,如果每一间客房住5人,那么有3人无房可住;如果每一间客房住6人,那么就空出2间客房.设该宾馆有客房x间、房客y人,列出关于x、y的二元一次方程组______.
11.为庆祝“六一”国际儿童节,某幼儿园要把一些图书分给几名小朋友.如果每个小朋友分3本,那么余8本;如果每个小朋友分5本,那么最后一个小朋友就分到3本,则这些书共有______本.
12.某采摘园计划拿出一笔固定的资金分两天购进甲、乙、丙三种水果树苗,且购买甲、乙、丙三种树苗的总价之比为3:4:6.第一天,采购员用于购买甲、乙、丙三种树苗的资金之比为2:3:1,第二天,采购员将用余下的资金继续购买这三种树苗,经预算需将余下资金的购买甲树苗,则采购员还需购买的乙、丙树苗的资金之比为________.
13.桂花村派男女村民共15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包.求这次采购的男村民人数和女村民人数;若设这次采购的水泥的男村民x人,女村民y人,则可列方程组为________________.
14.小贤有一张面值为100元的人民币,需要兑换成面值为5元或10元的零钱,若要求包含两种面值,则共有___________种兑换方案.
15.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,那么3辆大货车与5辆小货车一次可以运货______吨.
16.某酒店客房部有三人间普通客房,双人间普通客房,收费标准为:三人间150元间,双人间140元/间.为吸引游客,酒店实行团体入住5折优惠措施,一个48人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1380元,则该旅游团住了三人间普通客房和双人间普通客房共___________间.
三、解答题
17.某工厂车间采用智能数字机床生产纸杯和杯盖,已知一台机床每小时平均可以生产纸杯600个或者生产杯盖800个,车间共有14台机床,应怎样分配机床,才能使每小时生产的杯身和杯盖正好配套?
18.某蔬菜基地第一次向甲地运输124吨蔬菜,恰好装满5辆大货车和2辆小货车;第二次向甲地运输180吨蔬菜,恰好装满6辆大货车和5辆小货车.
(1)装满2辆大货车和3辆小货车能运输多少吨蔬菜?
(2)第三次安排大、小货车共12辆向甲地运输208吨蔬菜,若要使得每辆车都装满,则大货车和小货车分别需要多少辆?
19.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具?
20.学校6名教师和234名学生集体外出活动,准备租用45座大客车或30座小客车,若租用1辆大客车、2辆小客车共需租车费1000元;若租用2辆大客车、1辆小客车共需租车费1100元.
(1)求每辆大、小客车的租车费各是多少元?
(2)怎样租车,正好坐满?写出所有的可能性.(请列方程解答).
试卷第4页,共4页
试卷第3页,共4页
参考答案:
1.D
2.C
3.C
4.A
5.D
6.B
7.D
8.D
9.
10.
11.23
12.5:11
13.
14.9
15.24.5
16.19
17.分配8台机床生产杯身,6台机床生产杯盖.
18.(1)76吨
(2)大货车8辆和小货车4辆
19.生产甲种玩具零件12天,乙种玩具零件48天才能在60天内组装出最多的玩具
20.(1)每辆大车的租车费是400元,每辆小车的租车费是300元
(2)①租用30座小客车8辆;②租用45座大客车2辆,30座小客车5辆;③租用45座大客车4辆,30座小客车2辆
答案第1页,共2页
答案第1页,共1页