苏科版九年级下册 第5讲:最短距离之费马点 复习讲义(无答案)

文档属性

名称 苏科版九年级下册 第5讲:最短距离之费马点 复习讲义(无答案)
格式 doc
文件大小 260.0KB
资源类型 试卷
版本资源 苏科版
科目 数学
更新时间 2023-03-27 11:13:32

图片预览

文档简介

中小学教育资源及组卷应用平台
第5讲:最短距离之费马点
一、知识梳理
1、费马点的定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。
2、费马点的确定:
①如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;
②如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。
3、费马点的性质
①费马点到三角形三个顶点距离之和最小。
②费马点连接三顶点所成的三夹角皆为120°。
费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.
秘诀:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值
二、例题讲解
例题1. 已知:△ABC是锐角三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°.
求证:GA+GB+GC的值最小.
例题2.如图,是边长为1的等边内的任意一点,求的取值范围.
例题3. 已知正方形ABCD内一动点E到A、B、C三点的距离之和的最小值为,求正方形的边长.
例题4.如图,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A,D为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含B,C两点)开一个货物入口M,并修建三条专用车道PA,PD,PM.若修建每米专用车道的费用为10000元,当M,P建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留整数)
例题5.如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣6,0),B(6,0),C(0,4),延长AC到点D,使CD=AC,过点D作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)在第二问的条件下,设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)
例题6. 如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,且与x轴交于另一点C.
(1)求b、c的值;
(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;
(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR
①求证:PG=RQ;
②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.
三、课堂训练
1.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.
2.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为(  )
A.+ B.+ C.4 D.3
3.已知,在△ABC中,∠ACB=30°
(1)如图1,当AB=AC=2,求BC的值;
(2)如图2,当AB=AC,点P是△ABC内一点,且PA=2,PB=,PC=3,求∠APC的度数;
(3)如图3,当AC=4,AB=(CB>CA),点P是△ABC内一动点,则PA+PB+PC的最小值为   .
四、举一反三
1.如图l,在△ABC中,∠ACB=90°,点P为△ABC内一点.
(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D、A、E,连接CE.
①依题意,请在图2中补全图形;
②如果BP⊥CE,BP=3,AB=6,求CE的长
(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.
2.(1)阅读证明
①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
②如图2,已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA.
(2)知识迁移
根据(1)的结论,我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:
第一步:如图3,在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在上取一点P0,连接P0A,P0B,P0C,P0D.易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+   ;
第三步:根据(1)①中定义,在图3中找出△ABC的费马点P,线段   的长度即为△ABC的费马距离.
(3)知识应用
已知三村庄A,B,C构成了如图4所示的△ABC(其中∠A,∠B,∠C均小于120°),现选取一点P打水井,使水井P到三村庄A,B,C所铺设的输水管总长度最小.求输水管总长度的最小值.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)