中小学教育资源及组卷应用平台
第13讲:坐标系中平行四边形存在性问题
一、知识梳理
1、第四顶点坐标公式
坐标系中任意一个平行四边形相对的顶点横纵坐标的和相等。
2、方法总结
第一步:写出或设出三个顶点的坐标;
第二步:以“哪两个顶点相对”为分类标准,分三类讨论,利用第四顶点坐标公式,求出第四个顶点的坐标;
第三步:将第四个顶点坐标代入相应的函数关系式即可。
二、例题讲解
例题1.如图,已知抛物线y=x2﹣4x+3与x 轴交于两点A、B,其顶点为C.
(1)对于任意实数m,点M(m,﹣2)是否在该抛物线上?请说明理由;
(2)求证:△ABC是等腰直角三角形;
(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
例题2.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;
(1)求该抛物线的解析式;
(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
三、课堂训练
1.如图,抛物线y=x2+bx+c与直线y=x+交于A,B两点,与y轴交于点C,其中点A在x轴上,点B的纵坐标为2,点P为y轴右侧抛物线上一动点,过点P作x轴的垂线,交AB于点D.
(1)求抛物线的解析式;
(2)若点P的横坐标为m,直线AB与y轴交于点E,当m为何值时,以E,C,P,D为顶点的四边形是平行四边形?请说明理由;
(3)在直线AB的下方的抛物线上存在点P,满足∠PBD=45°,请直接写出此时的点P的坐标.
2、如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.
(1)求k的值.
(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x>0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;
(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.
四、举一反三
1.在平面直角坐标系xoy中,以点A(3,0)为圆心,5为半径的圆与x轴相交于点B、C(点B在点C的左边),与y轴相交于点D、M(点D在点M的下方).
(1)求以直线x=3为对称轴,且经过D、C两点的抛物线的解析式;
(2)若E为直线x=3上的任一点,则在抛物线上是否存在这样的点F,使得以点B、C、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,说明理由.
2.如图,在平面直角坐标系中,二次函数y=ax2﹣2x+c的图象与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方的抛物线上一动点.
(1)求二次函数的表达式;
(2)当点P运动到抛物线顶点时,求四边形ABPC的面积;
(3)点Q是x轴上的一个动点,当点P与点C关于对称轴对称且以点B、C、P、Q为顶点的四边形是平行四边形时,求点Q的坐标.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)