课题:5.2平面直角坐标系
第一课时
教学目标:
【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。
2、认识并能画出平面直角坐标系。
3、能在给定的直角坐标系中,由点的位置写出它的坐标。
【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。
【情感目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
教学重点:
1、 理解平面直角坐标系的有关知识。
2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。3、由点的坐标观察,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:
1、 横(或纵)坐标相同的点的连线与坐标轴的关系的探究。
2、 坐标轴上点的坐标有什么特点的总结。
教学方法:讨论式学习法
教学过程设计:
一、导入新课
『师』 :同学们,你们喜欢旅游吗?
假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(图5-6)
(1) 你是怎样确定各个景点位置的?
(2) “大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?
(3) 如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?
在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式。在这个问题中大家看用哪种方法比较合适?
『生』 :用反映直角坐标思想的定位方式。
『师』 :在上一节课中我们已经做过这方面的练习,现在应怎样表示呢?这就是本节课的任务。
二、新课学习
1、 平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。
『师』 :看书,倒数第二段P130 ~P131第一段。(三分钟后)请一位同学加以叙述。
『生』 :在平面内,两条互相垂直用公共原点的数轴组成平面直角坐标系。通常,……有序实数对(a,b)叫做点P的坐标。
『师』 :在了解有关直角坐标系的知识后,我们再返回刚才讨论的问题中,请大家思考后回答。
『生』 :(2)“大成殿”在“中心广场”南两格,西两格。“碑林”在“中心广场”北一格,东三格。
(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,则 “碑林”的位置是(3,1)。“大成殿”的位置是(-2,-2)。
『师』 :很好,在(3)的条件下,你能把其他景点的位置表示出来吗?
『生』 :能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7)。
2、 例题讲解
(出示投影)例1 书P131。
例1 写出图中的多边形ABCDEF各各顶点的坐标。
让学生回答。
『师』 :上图中各顶点的坐标是否永远不变?
『生甲』 :是。
『生乙』 :不是。当坐标轴的位置发生变动时,各点的坐标相应地变化。
『师』 :你能举个例子吗?
『生』 :可以,若以线段BC所在的直线为x轴,纵轴(y轴位置不变,则六个顶点的坐标分别为:A(-2,3),B(0,-3),C(3,0),D(4,3),E(3,6),F(0,6)
『师』 :那大家再思考这位同学的结论是否是永恒的呢?『生』 :不是。还能再改变坐标轴的位置,得出不同的坐标。『师』 :请大家在课后继续进行坐标轴的变换,总结以一下共有多少种。
3、想一想
在例1中,
(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?
(2)线段测定位置有什么特点?
(3)坐标轴上点的坐标有什么特点?
『师』 :由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B、C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。
请大家讨论第(2)题。
『生』 :由C(3,-3),E(3,3)可知,他们的横坐标相同,即C、E两点到y轴的距离相等,所以线段CE平行于纵轴(y轴),垂直于横轴(x轴)
『师』 :请大家找出坐标轴上的点。
『生』 :B(0,-3),A(-2,0),D(4,0),F(0,3)
『师』 :这些点的坐标中由什么特点呢?
『生』 :坐标中都有一个数字是0。
『师』 :从刚才的分析中可知,在坐标中只要有一个数字为0,则这个点一定在坐标轴上。当两个数字为0时,这个点是否在坐标轴上?
『生』 :当两个数字都为0时,就是坐标原点(0,0),原点既在x轴上,又在y轴上。
『师』 :那如何确定在哪个坐标轴上呢?
『生 』 :A(-2,0),D(4,0)在x轴上,可以看出这两个点的纵坐标为0,横坐标不为0;B(0,-3),F(0,3)在y轴上,可知它们的横坐标为0,纵坐标不为0。
『师』 :经过大家的共同探讨,我们可以总结出:坐标轴上的点的坐标中至少又一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0。
『师』 :刚才已知x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限。
各个象限内的点的坐标特征是怎样的?
『生』 :第一象限(+,+), 第二象限(-,+),
第三象限(-,-), 第四象限(+,-)。
4、做一做
(出示投影) 书P131
『师』 :请大家先独立思考,然后再进行交流。
『生』 :A(-3,4),B(-6,-2),C(6,-2),D(9,4)
A与D两点的纵坐标,B与C两点的纵坐标相同,因为AD、BC分别平行于横轴,A与B,C与D的横坐标不同,因为AB与CD是与x轴斜交,他们向横轴作垂线,垂足不同。
三、随堂练习
补充:1、在下图中,确定A、B、C、D、E、F、G的坐标。
(第1题) (第2题)
2、如右图,求出A、B、C、D、E、F的坐标。
四、本课小结
1、 认识并能画出平面直角坐标系。
2、 在给定的直角坐标系中,由点的位置写出它的坐标。
3、 能适当建立直角坐标系,写出直角坐标系中有关点的坐标。
4、 横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。
5、 坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。
6、各个象限内的点的坐标特征是:第一象限(+,+), 第二象限(-,+),
第三象限(-,-), 第四象限(+,-)。
五、课后作业
书P132 习题5.3
第二课时
教学目标:
【知识目标】:1、在给定的直角坐标系下,会根据坐标描出点的位置。
2、通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。
【能力目标】:1、经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力。
2、通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。
【情感目标】通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。
教学重点:
在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学难点:
在已知的直角坐标系下找点、连线、观察,确定图形的大致形状
教学方法:
导学法
教具准备:方格纸若干张
教学过程设计:
1、 导入新课
『师』 :在上节课中我们学面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。
练习:指出下列各点所在象限或坐标轴:
A(-1,-2.5),B(3,-4),C(,5),D(3,6),E(-2.3,0),F(0,), G(0,0) (抽生答)
『师』 :由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。
2、 新知学习
1、『师』 :请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。
(-9,3),(-9,0),(-3,0),(-3,3)
(学生操作完毕后)
『师』 :下面大家看和我画的一样吗?
『生』 :一样。
『师』 :这是一个什么图形?
『生』 :长方形。
2、(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
观察所得的图形,你觉得它象什么?
『师』 :分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?
(学生操作)
『师』 :(出示学生的作品)画出是这样的吗?这幅图画很美,你们觉得它像什么?
『生』 :这个图形像一栋“房子”旁边还有一棵“大树”。
3、做一做
(出示投影)书 P134
『师』 :在书上已建立的直角坐标系画,要求每位同学独立完成。
(学生描点、画图)
『师』 :(拿出一位做对的学生的作品投影)
你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?
『生』 :像猫脸。
三、随堂练习
(补充)1、在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
观察所得的图形,你觉得它像什么?(像移动的菱形)
2、在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的“十”字。
(选取的坐标系不同,得出的坐标也不同。)
『师』 :现独立完成,然后小组讨论是否正确?
四、本课小结
本节课在复习上节课的基础上,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。
五、活动与探究
『师』 :在例题和练习中,我们画出了不少美丽的图形,下面我们自己设计一些图形,并把图形方赛直角坐标系下,写出点的坐标。大家一定要自己设计,然后我们展示给同学们,看谁设计的图形最漂亮?
如右图:
六、课后作业
书P135 习题5.4
第三课时
教学目标:
【知识目标】1、进一步巩固画平面直角坐标系,在给定的直角坐标系中,会根据坐标轴描出点的位置,由点的位置写出它的坐标。
2、能在方格纸上建立适当的直角坐标系,描述物体的位置。
3、能结合具体情景灵活运用多种方式确定物体的位置。
【能力目标】根据已知条件有不同的解决问题的方式,灵活地选取既简便又易懂的方法求解是本节课的重点,通过多角度的探索既可以拓宽学生的思维,又可以从中找到解决问题的捷径,让学生的解决问题的能力得以提高。
【情感目标】1、通过学习建立直角坐标系有多种方法,让学生体验数学活动充满着探索与创造。
2、通过确定旅游景点的位置,让学生认识数学与人类生活的密切联系,提高他们学习数学的兴趣。
教学重点:根据实际问题建立适当的坐标系,并能写出各点的坐标。
教学难点:根据已知条件,建立适当的坐标系。
教学方法:探究式学习
教具准备:方格纸若干张。
教学过程设计:
1、 创设问题情境,引入新课
『师』 :在前两节课中,我们学习了在直角坐标系下由点找坐标,和根据坐标找点,并把点用线段连接起来组成不同的图形,还自己设计出了不少漂亮的图案。这些都是在已知的直角坐标系下进行的,如果给出一个图形,要你写出图中一些点的坐标,那么你必须建立直角坐标系,直角坐标系应如何建立?是惟一的情形还是多种情况,这就是本节课的内容。
2、 探索新知
1、【例】如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。
『师』 :在没有直角坐标系的情况下师不能写出各个顶点的坐标的,
所以应先建立直角坐标系,那么应如何选取直角坐标系呢?请大家思
考。
『生1』 :如图所示,以点C为坐标原点,分别以CD、CB所在直线为x轴、y轴,建立直角坐标系。
由CD的长为6,CB长为4,可得A、B、C、D的坐标分别为A(6,4),B(0,4),C(0,0),
D(6,0)。
『生2』 :如下图所示,以点D为坐标原点,分别以CD、AD所在直线为x轴、y轴,建立直角坐标系。
『师』 :这两位同学选取坐标系的方式都是以矩形的某一个顶点为坐标原点,举行的相邻两边所在直线分别作为x轴、y轴,建立直角坐标系的。这样建立直角坐标系的方式还有两种,即以A、B为原点,矩形两邻边分别为x轴、y轴建立直角坐标系。除此之外,还有其他方式吗?
『生3』 :有,如右图所示,以矩形的中心(即对角线的交点)为坐标原点,平行于矩形相邻两边的直角为x轴,y轴,建立直角坐标系。则A、B、C、D的坐标分别为A(3,2),B(-3,2),C(-3,-2),D(3,-2)。
『生4』 :把上图中的横坐标逐渐向上、下移动,纵坐标左、右移动,则可得到不同的坐标系,从而得到A、B、C、D四点的不同坐标。
『师』 :从刚才我们讨论的情况看,大家能发现什么?
『生』 :建立直角坐标系有多种方法。
2、【例】对于边长为4的整三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标。
解:略(书P136)
『师』 :正三角形的边长已经确定是4,则它一边上的高是不是会因
所处位置的不同而发生变化?
『生』 :不会,只是位置变化,而长度不会变。
『师』 :除了上面的直角坐标系的选取外,是否还有其他的选取
方法?
『生』 :有,……
3、【议一议】在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志点,并且知道葬保地点的坐标为(4,4),除此外不知道其他信息。如何确定直角坐标系找到“宝藏”?与同伴进行交流。
3、 随堂练习
书P136页 随堂练习 (体现建立直角坐标系的多样性)
(补充)某地为了发展城市群,在现有的四个中小城市A、B、C、D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。
4、 本课小结
本节课的目的是在方格纸上建立适当的直角坐标系,描述物体的位置。
5、 活动与探究
书P137页 试一试
6、 课后作业
书P137页 习题5.5
4
6确定位置(一)
教学目标:
知识与技能:明确确定位置的必要性,掌握确定位置的基本方法
情感与价值观:让学生主动地参与观察、操作与活动,感受丰富的现实背景,体验形式多样的确定位置的方式,增强学习的兴趣。
教学重点:感受确定物体位置的多种方式与方法,能比较灵活地运用不同的方式确定物体的位置。
教学过程:
一、创设情境、引入新课
教师提问一学生:今天你回家,母亲问你在班级中的座位,你会怎样说?
(例如:第3小组,第4排)
师:生活中我们常常需要确定物体的位置。如:确定学校、家庭的位置、城市的位置等,本节课我们就来研究为什么要确定位置,掌握确定位置的一些基本方法。
二、讲授新课:
1、师:去电影院看电影需买票,如果你买的票是10排12号,在电影院如何找到这个位置呢?
(从电影院里的横排找到10排,再在这一排中找到12号)
师:在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?
师:如果将“8排3号”简记作(8,3),那么“3排8号”如何表示(5,6)表示什么含义?
[“6排3号”中的“6”指的是第6排,“3排6号”中“6”指是第3排中的6号座位,3排8号可以记作(3,8),(5,6)表示“第5排6号”]
2、议一议
(1)在电影院内,确定一个座位一般需要几个数据?为什么?
(2)在生活中,确定物体的位置还有其他方法的吗?与同伴交流。
(在只有一层的电影院内,确定一个座位一般需两个数据。一个用来确定排,一个用来确定号,如果是多层的电影院,一般还需要另外一个数据,确定位置在几层)。
(如:生活中家庭住址,寝室的位置等)。
3、投影图5-1
出示例1:图5-1是某次海战中敌我双方舰艇对峙示意图,对我方潜艇来说:
(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需几个数据?
解:(1)对我方潜艇来说,北偏东40°的方向上有两个目标:敌舰B和小岛,要想确定敌舰B的位置,仅用北偏东40°的方向是不够的,还需要知道敌舰B距我方潜艇的距离。
(2)距我方潜艇图上距离1cm处的敌舰有两艘:敌舰A和敌舰C。
(3)要确定每艘敌舰的位置,各需要两个数据:距离和方位角。
4、随堂练习:P124,练习(让学生找出标在图上后投影交流)。
5、投影P124,图5-2
议一议:
(1)图5-2是广州市地图简图的一部分,如何向同伴介绍“广州起义烈士陵园”所在区域?“广州火车站”呢?
(2)生活中还有哪些用类似的方法确定位置的?举出两例。
(“广州起义烈士陵园”在C4区,“广州火车站”在B3区)
三、小结:
1、在现实情境中感受物体位置的必要性。
2、确定物体位置的方法与方式是多样的?我们应灵活运用不同的方式确定物体的位置。
四、作业:1、P125,习题:5.1
2、作业本第5章 回顾与思考
教学目标:
【知识目标】1、在平面内,确定点的位置一般需要两个数据。
2、灵活地运用不同的方式确定物体的位置。
3、认识并能画出平面直角坐标系,能在方格纸上建立适当的直角坐标系,描述物体的位置。
4、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
5、会画坐标系,描述、连线、看图。
6、理解图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系。
【能力目标】1、熟练掌握本章的知识网络结构及相互关系。
2、在现实情境中灵活运用不同的方式确定物体的位置。
3、会建立适当的直角坐标系,在此坐标系中会根据坐标描出点的位置,由点的位置写出它的坐标。
4、通过描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识,合作交流意识。
5、经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。
【情感目标】1、通过本章内容的小结与复习,培养学生学会归纳,整理所学知识的能力。
2、认识事物之间的内在联系及相互转化。
3、培养学生的数学应用意识。
教学重点:
本章知识的网络结构及相互知识之间的相互关系。
教学难点:
所学知识的应用。
教学过程设计:
1、 小结本章知识的网络结构:(如右图)
2、 回忆主要知识点:
1、 生活中确定位置的方式方法?举例说明。
『生』:电影院例找座位。(需要确定排号与座位号两个数据)
在地图上确定某个城市 (需要经度与纬度)
找家庭地址(几号楼、几单元、几层、几号四个数据)
因此确定位置的方式方法很多,要根据实际情况来选择什么方法,数据的个数也会因问题的不同而变化。确定物体的位置时数据不能少于两个。
【小结】一般地,在平面内确定物体的位置需要两个数据,在空间中确定物体的位置需要三个数据。
2、 在直角坐标系中如何确定给定点的坐标,以及根据坐标描出点的位置。
对于平面内任意一点P,过点P分别向x轴、y轴作垂线、垂足在x轴、y轴上的数a、b分别叫做点P的横坐标、纵坐标,有序实数对(a,b)叫做点P的坐标。
反过来,过x轴上的点a作x轴的垂线,过y轴上的点b作y轴的垂线,两条垂线的交点就是所要找的点。
3、 在平面直角坐标系中,x轴上的点的坐标有什么特点?y轴上的点的坐标有什么特点?横坐标相同或纵坐标相同的点的连线的位置有什么特点?
『生』:在平面直角坐标系中,x轴上的点的纵坐标为O;y轴上的点的横坐标为O;如果两个点的横坐标相同,则连接这两点的线段或直线平行于y轴;若两个点的纵坐标相同,则连接这两点的线段或直线平行于x轴。
做书P146页的第5题。
4、 已知某一图形,建立适当的直角坐标系,并写出各个顶点的坐标。
5、 在直角坐标系中描出某些点,并将这些点用线段依次连接起来得到一个图形,当这些点的坐标发生变化时,图形应怎样变化?
做书P146页的第6题。
3、 课堂练习
书P147页 B组第4题
4、 本课小结
本节课重点复习归纳了本章内容中的各知识点及各知识点之间的关系于各知识点的熟练综合应用能力。
5、 课后作业
书P145页 复习题 (除A组5、6 B组4题外)
EMBED PBrush课题:5.3变化的鱼
第一课时
教学目标:
【知识目标】:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。
2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系。
【能力目标】:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。
2、通过图形的平移,轴对称等,培养学生的探索能力。
【情感目标】1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。
教学重点:
经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。
教学难点:
由坐标的变化探索新旧图形之间的变化。
教学方法:
导学法
教学准备: 图5-15挂图一幅
教学过程设计:
1、 创设问题情境,引入新课
『师』 :在前几节课中我们学面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。
我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。
『师』 :你们画出的图形和我这里的图形(挂图)是否相同?
『生』 :相同。
『师』 :观察所得的图形,你们决定它像什么?
『生』 :像“鱼”。
『师』 :鱼是营养价值极高的食物,大家肯定愿意吃鱼,但上面的这条鱼太小了,下面我们把坐标适当地作些变化,这条鱼就能变大或变胖,即变化的鱼。(板书课题)
2、 新课学习
1、【例1】将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),
(4,-2),(0,0)做以下变化:
(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
『师』 :先根据题意把变化前后的坐标作一对比。如下:
(1)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)
(0,0),(10,4),(6,0),(10,1),(10,-1),(6,0),(8,-2),(0,0)
(2)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)
(3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2),(3,0)
根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来。
你们画出的图形与下面的图形相同吗?
『生』 :相同。
『师』 :这个图形与原来的图形相比有什么变化呢?
『生』 :比原来的鱼长了。
『师』 :将各点用线段依次连接起来,所得图案与原图案相比,整条鱼横向拉长为原来的的2倍。即鱼变长了。
(师选一生的第(2)题的图对比)
『师』 :大家的图形和他画的是否相同?
『生』 :相同。
『师』 :这个图形和原来的图形相比是变长了还是变胖了?
『生』 :没变。
『师』 :新的图案与原图案相比,鱼的形状、大小不变,整条鱼向右平移了3个长度单位。
小结:从上面的两种变化情况来看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单位;当横坐标分别变成原来的2倍,纵坐标不变时,整条鱼被横向拉长为原来的2倍。这两种情况都是横坐标变化,纵坐标不变,图形是被拉长或向右移动,当纵坐标发生变化,横坐标不变时,鱼会怎样变化呢?
2、【例2】将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下变化:
(1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原来的图案相比有什么变化?
(2)横、纵坐标分别变成原来的2倍,所得的图案与原来的图案相比有什么变化?
(指导学生先做第(1)题:描述坐标的变化,再画图)
『师』 :图形应变成什么图形?
『生』 :图形和原来图形相比,好像鱼沿x轴翻了个身。
『师』 :是的,所得的图案与原图案关于横轴成轴对称。
(指导学生做第(2)题,方法同上)
『师』 :图形应变成什么样了?
『生』 :所得的图案与原图案相比,形状不变、大小放大了一倍。
『师』 :即鱼长大长胖了。
3、 分小组讨论:当坐标如何变化时,鱼就长大了;什么情况下,鱼就向右移动了;什么情况下,鱼就翻身了;什么情况下,鱼既长长又长胖。
『生』 :(1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。
(2)当横坐标变为原来的2倍,纵坐标不变时,鱼长长了,没胖。
(3)当横坐标不变,纵坐标分别乘以-1时,鱼翻身了,即后来的鱼和原来的鱼关于x轴对称。
(4)当横、纵坐标分别变成原来的2倍时,鱼既长长又长胖了。
『师』 :当坐标如何变化时,鱼就长胖了?当坐标如何变化时,鱼就关于原点对称了?当坐标如何变化时,鱼就向上移动了?当坐标如何变化时,鱼就关于y轴成轴对称?
『师』 :以上我们对不同的情况进行了探索整理,也找到了规律,在以后的学习中大家要多思考,找规律。这样理解得深,学的知识比较牢固。
3、 随堂练习
(1)将右图中的各个点的纵坐标不变,横坐标都乘-1,与原图案相比,所得的图案有什么变化?
(2)将右图中的各个点的横坐标不变,纵坐标都乘-1,与原图案相比,所得的图案有什么变化?
(3)将上图中各个点的横坐标都乘-2,纵坐标都乘-2,与原图形相比,所得的图案有什么变化?
4、 本课小结
本节课主要研究横坐标或纵坐标发生变化时,新图案与旧图案相比有什么变化。
5、 课后作业
书P141 习题5.6
第二课时
教学目标:
【知识目标】:1、进一步巩固图形坐标变化与图形定的平移,轴对称,伸长,压缩之间的探索过程,发展学生的形象思维能力和数形结合意识。
2、根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
【能力目标】:1、通过对称轴左边的图形,观察得出右边的图形,训练学生的识图能力。
2、具有初步的创新精神和实践能力。
【情感目标】:通过研究有趣的图形,学生能进行探索和创造,把学到的知识灵活地运用现实生活中。
教学重点:
作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。
教学难点:
作某一图形关于对称轴的对称图形。
教学方法:探究式学习
教学过程设计:
1、 创设问题情境,导入新课
『师』:在日常生活中,你们见到过哪些轴对称图形?中心对称图形?
『生』:……
『师』:轴对称图形和中心对称图形随处可见。古时我国很多的建筑就有对称的结构,既美观又大方。
上节课,我们已经知道,把一个图形的横坐标都乘以-1,纵坐标不变时,所得的图形与原图形关于y轴对称;把一个图形的纵坐标都乘以-1,横坐标不变时,所得的图形与原图形关于x轴对称。把一个图形的横坐标、纵坐标都乘以-1时,所得的图形与原图形关于原点对称。
那么如果已知一个图形,你能否求出这个图形中的某些点关于x轴或y轴或原点对称的对称点的坐标呢?或者已知轴对称图形(或者中心对称图形)的一半,你能否画出另一半呢?
2、 新课学习
1、 例题讲解
如图中,左右两幅图案关于y轴对称,右图中的左右眼睛的坐标分别是(2,3),
(4,3)。嘴角左右端点的坐标分别是
(2,1),(4,1)。
(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标。
(2)你是怎样得到的?与同伴交流。
(此题较为简单。抽学生解答)
『师』:现从对称的角度来考虑,可以发现什么?
『生』:左右两幅图案关于y轴对称。从而发现两幅图案上各个对应点的纵坐标相同,横坐标互为相反数。
『师』:上图中,我们可根据这个规律确定左图案的左右眼睛与左右嘴角端点的坐标。
2、 议一议
(1)如果将上图中的右图案沿x轴正方向平移1个单位长度,那么左右眼睛的坐标将发生什么变化?
(2)如果作图中的右图案关于x轴的轴对称图形,那么左右眼睛的坐标将发生什么变化?
(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么左右眼睛的坐标将发生什么变化?
(先独立思考,再小组交流,发表)
『生』:(1)如果将上图中的右图案沿x轴正方向平移1个单位长度,所以每一个点的横坐标都加1,纵坐标不变。因此左右眼睛的坐标分别为(3,3),(5,3)。
(2)如果作图中的右图案关于x轴的轴对称图形,根据关于x轴对称的两图形对应点的特点可知,横坐标不变,纵坐标变为原纵坐标的相反数。所以左右眼睛的坐标现变为(2,-3),(4,-3)。
(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么图案中的每一点的纵坐标都增加2,横坐标不变。所以左右眼睛的坐标为(2,5),(4,5)。
『师』:如果再上面的问题中右图案不是沿x轴正方向或y轴正方向移动,而是沿x轴负方向或y轴负方向移动,那么左、右眼睛的坐标又该如何变化?
『生』:和上面相反,沿x轴负方向移动几个单位长度,横坐标减去几,纵坐标不变;沿y轴负方向移动几个单位长度,纵坐标减去几,横坐标不变。
3、 做一做
如右图,正方形ABCD的顶点坐标分别为A(1,1),B(3,1),C(3,3),
D(1,3)。
(1)再同一直角坐标系中,将正方形向左平移2个单位,画出你相应的图形,并写出各点的坐标。
(2)将正方形向下平移2个单位,画出相应的图形,并写出各点的坐标。
(3)在(1)(2)中,你发现各点的横、纵坐标发生了哪些变化?
解:(1)(2)略。(3)在(1)中,各点的横坐标减少了2,纵坐标不变;在(2)中,横坐标不变,纵坐标都减少了2。
4、 如右下图,作字母H关于坐标原点的中心对称图形,并写出所得图形相应各点的坐标。
3、 随堂练习
书P143随堂练习
4、 本课小结
1、 会作出某一图形关于x轴、y轴、原点的对称图形,并能写出相应点的坐标。
2、 把整个图形整体向上、向下、向左、向右移动几个单位长度后,图形有何变化,变化的规律是怎样的。
5、 课后作业
书P144 习题5.7确定位置(二)
教学目标
知识与技能:
1、体会极坐标和直角坐标思想,并能解决一些简单的问题;
2、能利用比例尺计算实际距离。
3、发展学生的识图能力。
情感与价值观:
1、由学生感兴趣的图形激发学生的学习兴趣;
2、通过运用位置确定的方法解决实际问题,体验到数学与人类生活是密切联系的。
教学重点:会根据已知条件正确表示物体的位置。
教学过程:
一、创设情境,引入新课
师:如图,如果用(0,0)表示点A,(1,0)表示点B,(1,2)表示点F。想一想:按照这个规律该如何表示其它点的位置:
二、新授:
1、学生分小组讨论,找出规律,然后回答交流:
{C(2,0),D(2,1),E(2,2),G(0,2),H(0,1)}
2、做一做:(投影P126,图5-3)
如果用(0,0)表示点A的位置,用(2,1)表示点B的位置,那么
(1)图①中五角星五个顶点的位置如何表示?
(2)图②中五枚黑棋子的位置如何表示?
(3)图②中(6,1),(10,8)位置上的棋子分别是哪一枚?
师:这里的数据有两个,一个表示水平方向与A点距离,另一个表示竖直方向上到A点的距离。
3、例2(投影图5-4)
借助刻度尺,量角器解决如下问题:
(1)教学楼位于校门的北偏东多少度的方向上?到校门的图上距离约是多少厘米?实际距离呢?
(2)某楼位于校门的南偏东约75°的方向,到校门的实际距离约240米,说出这一地点的名称。
(3)如果用(2,5)表示图上校门的位置,那么图书馆的位置如何表示?(10,5)表示哪个地点的位置?
同桌学生合作,利用刻度尺,量角器等工具,在书上测量并计算。
(1)北偏52°,图上距离为2.5cm,实际距离为250米(注意单位的换算)
(2)240米=24000厘米,24000÷10000=2.4(厘米),经测量位于校门的南偏东70°的方向上,到校门的距离240米的地点是实验楼。
(3)图书馆的位置表示为(2,9)、(10,5)表示旗杆的位置。
4、想一想:上例中,分别是通过何种方式表示一物体的位置呢?仅有一个数据,能准确确定教学楼的位置吗?
让学生发表自己的看法后,师总结:
两种方式:①方位角和距离。②与0点的水平距离及与0点的竖直距离的两个数据。仅用一个数据不能准确地确定教学楼的位置。
5、做一做,投影图5-5
如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
让学生思考后,分别让若干个学生说出其他几个位置的表示方法:(0,0)、(1,0)、(3、2)、(3、4)、(5、4)、(5、6)、(7、6)、(7、8)
师:这里我们习惯上把表示水平上的距离的数据写在前面,表示竖直距离的数据写在后面,组成的一对数表示某点的位置。
三、随堂练习:P128、1、2
T1,四人小组合作,在图中画出条路线,写出表达方式。
T2,先引导学生选择确定位置的方法,再利用工具测量。
四、小结:确定位置的两种方式。
五、作业:(1)习题5、2
(2)作业本