图形的初步认识单元测试卷[上学期]

文档属性

名称 图形的初步认识单元测试卷[上学期]
格式 rar
文件大小 23.3KB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2007-10-24 09:14:00

图片预览

文档简介

2005年秋七年级数学单元测试卷
(图形的初步认识)
班级_______ 姓名___________ 座号______ 成绩_________
1、 填空题:(每小题3分,共39分)
1、 如图⑴,有____条直线,有____条线段,有____条射线。 ⑴
2、 如图⑵,从A地到B地走②路线最近,它根据的是________________________
3、 用度、分、秒表示 35.12°=____°____′____″
4、 已知:P是线段AB的中点,PA=3cm ,则AB=______cm.
5、 已知∠a=42°31′,则∠a的余角为_________. ⑵
6、 如图⑶,射线OA所表示的方向是______________.
7、 如图⑷,AC⊥BC,垂足为C,则A到直线BC的距离是线段______的长度。
8、 如图⑸,直线a∥b,∠1=50°,则∠2=______.
9、 如图⑹∠1与∠2是直线____与____被直线____所截而成的内错 角。
10、 如图⑺,O是直线AB上的一点,OD平分∠AOC,OE平分∠BOC,则 ∠DOE=______.
11、 如图⑻它是正方体的表面展开图,则C面的对面是_____面。
12、 如图⑼,要得到AB∥CD,则需要角相等的条件是_______________(写一个即可).
13、 钟表上表示的时间为8点15分,则时针与分针的夹角为______度。
⑺ ⑻ ⑼
2、 选择题:(每小题4分,共24分)
14、如图⑽,与∠a是同位角的有( )个。
A. 3 B. 4 C. 5 D. 6 ⑽
15、下列语句错误的有( )个。
① 相等的角是对顶角 ② 等角的补角相等 ③ 同位角相等 ④ 过一点有且只有一条直线与已知直线垂直 ⑤ 连结两点的线段叫做两点间的距离 ⑥ 不相交的两条直线互相平行
A. 2 B. 3 C.4 D. 5
16、不能用一副三角板画出的角是(  )。
A. 15° B. 75° C. 105° D. 125°
17、下列图形中不是正方形的展开图的是( )
A. B. C. D.
18、如图⑾,已知 AB∥CD, 则①∠B=∠1 ②∠2=∠B
③∠2=∠A ④∠3=∠B,其中说法正确的是( )
A.①②③④ B. ②③④ C. ③④ D. ①④

19.观察下列图形,并阅读图形下面的相关文字:
两条直线相交 三条直线相交 四条直线相交 ……
最多有1个交点 最多有3个交点 最多有6个交点
象这样有11条直线相交,最多交点的个数是( )
A、45 B、36 C、50 D、55
三、作图题:(每小题5分,共15分)
1、读下列语句,并画出图形。
⑴点A在直线c上,点B在直线c外.⑵直线a与直线AB相交于点O.
⑶画出下面三角形中AC边上的高
 四、计算题:(每小题10分,共20分)
⑴已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5
求:线段CD的长度.
⑵如图,已知直线AB∥CD,直线m与AB、CD相交于点E、F, EG平分∠FEB,∠EFG=50°, 求∠FEG的度数.
五、将方格纸中的图形向右平移3格,并向下平移4格,画出平移后的图形.(10分)
六、填空或填写理由:(每空2分,共22分)
 ⑴ ∵∠1+∠2=90°,∠1+∠3=90°(已知)
∴∠2=∠3(             )
⑵ ∵a∥b, a∥c (已知)
∴b∥c( )
⑶如图① ∵∠(  )=∠(  )(已知)
     ∴AB∥CD(            )
 ⑷如图②,直线a∥b,∠3=85°,求∠1,∠2的度数. ①
解:  ∵a∥b(   )
    ∴∠1=∠4( )
∵∠4=∠3( ),∠3=85°( )
∴∠1=( )(等量代换)
又∵∠2+∠3=85°,
∴∠2=( )(等式的性质)

七、下列物体是由四个小正方形搭成的,请画出它的正视图,左视图和俯视图。(10分)
八、如下图,∠1=∠C, ∠2与∠3互补,那么AB与 EF平行吗?为什么?(10分)
参考答案:
一、1、1 ,3 ,6 2、两点之间,线段最短 3、35,7,12 4、6
5、47°29′ 6、北偏西38° 7、AC 8、130° 9、AB CD AC 10、90°
11、 F 12、∠DCE=∠ABC或∠FBC=∠BCD 13、157.5
二、
A C D B C D
三、
1、 2、
3、
四、
(1)解∵AD=7,BD=5 (2)解:∵AB∥CD(已知)
∴AB=AD+BD=12 ∴∠EFG+∠FEB=180°(两直线平行,同旁内角互补)
∵C是AB的中点 ∵∠EFG=50°(已知)
∴AC=AB=6 ∴∠FEB=130° (等式的性质)
∴CD=AD-AC=7-6=1 ∵EG平分∠FEB (已知)
∴∠FEG=∠FEB=65°(角平分线的定义)
五、
六、
(1)同角的余角相等
(2)如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
(3)3; 4; 内错角相等,两直线平行。
(4)已知;两直线平行,同位角相等;对顶角相等;已知;85° ;95°
七、解:
正视图为: 左视图为: 俯视图为:
八、
解:∵∠1=∠C(已知)
∴DE∥BC(同位角相等,两直线平行)
∴∠3与∠B互补 (两直线平行,同旁内角互补)
∵∠2与∠3互补(已知)
∴∠2=∠B (同角的补角相等)
∴AB∥EF(同位角相等,两直线平行)
注:本题解法不唯一。
AA
a
B
C
A
B
C
D
F
E
a
b
A
B
C
D
A
B
O
A
A
B
C
a
b
A
B
C
D




B
B
A
D
m
C
D
G
E
F
B
D
C
A
E
O
F
A
D
B
C
D
B
E
C
A
E
F
C
A
D
A
B
C
A
B
C



4
2
3
1
2
1
3
a
42°
2
2
1
1
4
3
3
2
1
2
1
A
B
O
c
A
B.. ....

A
B
C
PAGE
1
第 页