【优化方案】2013-2014学年高中物理选修3-2(人教新课标版)配套知能演练轻松闯关:第四章 电磁感应(6套)

文档属性

名称 【优化方案】2013-2014学年高中物理选修3-2(人教新课标版)配套知能演练轻松闯关:第四章 电磁感应(6套)
格式 zip
文件大小 1.5MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2014-05-17 11:01:20

文档简介


1.(2011·高考海南卷)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是(  )
A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系
B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系
C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系
D.焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系
解析:选ACD.奥斯特发现的电流的磁效应表明了电能生磁,A正确.欧姆定律描述了电流与电阻、电压或电动势之间的关系,焦耳定律才揭示了热现象与电现象间的联系,B错误、D正确.法拉第发现的电磁感应现象表明了磁能生电,C正确.故选ACD.
2.
如图所示,矩形线框abcd放置在水平面内,磁场方向与水平方向成α角,已知sin α=4/5,回路面积为S,磁感应强度为B,则通过线框的磁通量为(  )
A.BS          B.4BS/5
C.3BS/5 D.3BS/4
解析:选B.在磁通量Φ=BS公式中,B与S必须垂直,若B与S不垂直,则S要转化为垂直于B的有效面积,也可以将B转化为垂直于S的垂直分量,故Φ=BSsin α=4BS/5.故选B.
3.
如图所示,a、b、c三个闭合线圈放在同一平面内,当线圈a中有电流I通过时,它们的磁通量分别为Φa、Φb、Φc,下列说法中正确的是(  )
A.Φa<Φb<Φc B.Φa>Φb>Φc
C.Φa<Φc<Φb D.Φa>Φc>Φb
解析:选B.当a中有电流通过时,穿过a、b、c三个闭合线圈的向里的磁感线条数一样多,向外的磁感线的条数c最多,其次是b,a中没有向外的磁感线,因此,根据合磁通量的计算,应该是:Φa>Φb>Φc.故选B.
4.如图所示环形金属软弹簧所处平面与某一匀强磁场垂直,将弹簧沿半径方向向外拉成圆形,则以下措施不能使该金属弹簧中产生感应电流的是(  )
A.保持该周长不变,将弹簧由圆形拉成方形
B.保持该周长不变,将弹簧由圆形拉成三角形
C.保持该面积不变,将弹簧由圆形拉成方形
D.保持该面积不变,将弹簧由圆形拉成三角形
解析:选CD.根据感应电流产生的条件及数学知识,可知C、D项中的磁通量不变,不能产生感应电流,A、B项中,弹簧的面积发生变化,磁通量发生变化,产生感应电流.故选CD.
5.边长为10 cm的正方形线圈,固定在匀强磁场中,磁场方向与线圈平面的夹角为θ=30°,如图所示,磁感应强度随时间的变化规律为:B=2+3t(T),求在第1 s内穿过线圈的磁通量的变化量ΔΦ.
解析:t=0时刻的磁感应强度:
B1=(2+3×0) T=2 T
t=1 s时刻的磁感应强度:
B2=(2+3×1) T=5 T
磁通量的变化量:
ΔΦ=Φ2-Φ1=B2Ssin θ-B1Ssin θ=0.015 Wb.
答案:0.015 Wb
(温馨提示:凡题号前标有☆的为稍难题目)
一、选择题
1.(单选)(2013·东北师大附中高二检测)关于产生感应电流的条件,以下说法中正确的是(  )
A.闭合电路在磁场中运动,闭合电路中就一定有感应电流产生
B.闭合电路在磁场中做切割磁感线运动,闭合电路中一定有感应电流产生
C.穿过闭合电路的磁通量为零的瞬间,闭合电路中一定没有感应电流产生
D.只要穿过闭合导体回路的磁通量发生变化,闭合导体回路中就有感应电流产生
解析:选D.产生感应电流的条件有两个:(1)闭合电路;(2)穿过闭合电路的磁通量发生了变化.故选D.
2.(单选)如图所示,通电直导线下边有一个矩形线框,线框平面与直导线共面.若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将(  )
A.逐渐增大 B.逐渐减小
C.保持不变 D.不能确定
解析:选B.当矩形线框在线框与直导线决定的平面内逐渐远离通电导线平动时,由于离开导线越远,磁场越弱,而线框的面积不变,则穿过线框的磁通量将减小,故选B.
3.(单选)如图所示,虚线框内有匀强磁场,大环和小环是垂直于磁场放置的两个圆环,分别用Φ1和Φ2表示穿过大小两环的磁通量,则有(  )
A.Φ1>Φ2 B.Φ1<Φ2
C.Φ1=Φ2 D.无法确定
解析:选C.大环和小环在磁场中的有效面积等于在磁场区域范围内的一部分,两环的有效面积相同,故Φ1=Φ2.故选C.
4.(单选)(2013·江北中学高二检测)如图所示,ab是水平面上一个圆的直径,在过ab的竖直平面内有一根通电导线ef.已知ef平行于ab,当ef竖直向上平移时,电流磁场穿入圆面积的磁通量将(  )
A.逐渐增大 B.逐渐减小
C.始终为零 D.不为零,但保持不变
解析:选C.利用安培定则判断直线电流产生的磁场,作出俯视图如图所示.考虑到磁场具有对称性,可以知道,穿入线圈的磁感线的条数与穿出线圈的磁感线的条数是相等的.故选C.
5.(单选)(2013·蚌埠二中高二检测)金属矩形线圈abcd在匀强磁场中做如图所示的运动,线圈中有感应电流的是(  )
解析:选A.在选项B、C中,线圈中的磁通量始终为零,不产生感应电流;选项D中磁通量始终最大,保持不变,不发生变化,也没有感应电流;选项A中,在线圈转动过程中,磁通量做周期性变化,产生感应电流,故选A.
6.(多选)如图所示,两个线圈绕在同一个铁环上,线圈A接直流电源,线圈B接灵敏电流表,下列哪种情况可能使线圈B中产生感应电流(  )
A.将开关S接通或断开的瞬间
B.开关S接通一段时间之后
C.开关S接通后,改变变阻器滑片的位置时
D.拿走铁环,再做这个实验,开关S接通或断开的瞬间
解析:选ACD.本题的实验方法就是当年法拉第实验原理装置,根据法拉第对产生感应电流的五类概括,A、C、D选项符合变化的电流(变化的磁场)产生感应电流的现象.而开关S接通一段时间之后,A线圈中是恒定电流,不符合“磁生电”是一种在变化、运动过程中才能出现的效应,故不能使B线圈中产生感应电流.故选ACD.
7.(多选)如图所示,在匀强磁场中有两条平行的金属导轨,磁场方向与导轨平面垂直.导轨上有两条可沿导轨自由移动的金属棒ab、cd,与导轨接触良好.这两条金属棒ab、cd的运动速度分别是v1、v2,且井字形回路中有感应电流通过,则可能(  )
A.v1>v2         B.v1C.v1=v2 D.无法确定
解析:选AB.只要金属棒ab、cd的运动速度不相等,穿过井字形回路的磁通量就发生变化,闭合回路中就会产生感应电流.故选AB.
8.(多选)如图所示,金属裸导线框abcd放在水平光滑金属导轨上,在磁场中向右运动,匀强磁场垂直水平面向下,则(  )
A.G1表的指针发生偏转
B.G2表的指针发生偏转
C.G1表的指针不发生偏转
D.G2表的指针不发生偏转
解析:选AB.虽然线框abcd构成的闭合回路中没有磁通量的变化,但电流表G1和线框abcd构成的闭合回路中磁通量发生变化,有感应电流流过G1和G2,故选AB.
☆9.(单选)如图甲所示,一面积为S的矩形导线框abcd,在匀强磁场中,磁场的磁感应强度为B,方向与ad边垂直并与线框平面成45°角,O、O′分别是ab和cd边的中点.现将线框右半边ObcO′绕OO′逆时针转过90°到图乙所示位置,下列判断正确的是(  )
A.在图甲位置时线圈中的磁通量是BS
B.在图乙位置时线圈中的磁通量是BS
C.由图甲位置到图乙位置线圈中的磁通量变化了BS
D.由图甲位置到图乙位置线圈中的磁通量变化了BS
解析:选C.因为Φ1=BSsin 45°=BS,Φ2=0.
所以ΔΦ=BS,故选C.
☆10.(多选)如图是一水平放置的矩形线圈abcd,在细长的磁铁的N极附近竖直下落,保持bc边在纸外,ad边在纸内,由图中的位置A经过位置B到位置C,这三个位置都靠得很近且B位置刚好在条形磁铁的中心轴线上.在这个过程中,下列说法正确的是(  )
A.由位置A到位置B,框内不产生感应电流
B.由位置A到位置B,框内产生感应电流
C.由位置B到位置C,框内产生感应电流
D.由位置B到位置C,框内不产生感应电流
解析:
选BC.如图所示,作出其正视(从对面看去)图,从图中可以看出:从位置A到位置B的过程中,从线框下面向上穿过线框的磁通量减少(B位置时,Φ=0);而从位置B到位置C时,从线框上面向下穿过线框的磁通量增加,故由位置A到位置B和由位置B到位置C的两个过程中,穿过线框的磁通量都发生变化,都产生感应电流,故选BC.
0?0?二、非选择题
11.(2013·济宁高二检测)在研究电磁感应现象的实验中所用的器材如图所示.它们是:
①电流计 ②直流电源 ③带铁芯的线圈A
④线圈B ⑤电键 ⑥滑动变阻器
(1)试按实验的要求在实物图上连线(图中已连好一根导线).
(2)怎样才能使线圈B中有感应电流产生?试举出三种方法.
①________________________________________________________________________;
②________________________________________________________________________;
③________________________________________________________________________.
解析:(1)使线圈A与电键、直流电源、滑动变阻器串联,线圈B与电流计连成闭合回路;
(2)只要能使穿过线圈B的磁通量发生变化,就可以使线圈B中产生感应电流.
答案:(1)如图所示
(2)①闭合开关 ②断开开关
③开关闭合时移动滑动变阻器滑片
☆12.(2013·杭州一中高二月考)如图所示的线框,面积为S,处于磁感应强度为B的匀强磁场中,B的方向与线框平面成θ角,当线框转过90°到如图所示的虚线位置时,试求:
(1)初、末位置穿过线框的磁通量Ф1和Ф2;
(2)磁通量的变化量ΔФ.
解析:(1)法一:在初始位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥=Ssin θ,所以Φ1=BSsin θ.在末位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥=Scos θ.由于磁感线从反面穿入,所以Φ2=-BScos θ.
法二:如果把磁感应强度B沿垂直于面积S和平行于面积S进行分解,如图所示,则
B上=Bsin θ,B左=Bcos θ
有Φ1=B上S=BSsin θ
Φ2=-B左S=-BScos θ.
(2)开始时B与线框平面成θ角,穿过线框的磁通量Φ1=BSsin θ;当线框平面按顺时针方向转动时,穿过线框的磁通量减少,当转动θ时,穿过线框的磁通量减少为零,继续转动至90°时,磁通量从另一面穿过,变为“负”值Φ2=-BScos θ.所以,此过程中磁通量的变化量为
ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BS(cos θ+sin θ).
答案:(1)BSsin θ -BScos θ
(2)-BS(cos θ+sin θ)

1.下列关于涡流的说法中,正确的是(  )
A.涡流跟平时常见的感应电流一样,都是因为穿过导体的磁通量变化而产生的
B.涡流不是感应电流,而是一种有别于感应电流的特殊电流
C.涡流有热效应,但没有磁效应
D.在硅钢中不能产生涡流
解析:选A.涡流本质上是感应电流,是导体自身构成回路,在穿过导体的磁通量变化时产生的,所以A正确B错误.涡流不仅有热效应,同其他电流一样也有磁效应,C错误.硅钢电阻率大,产生的涡流较小,但仍能产生涡流,D错误.故选A.
2.(2013·唐山一中高二检测)下列应用中哪些与涡流有关(  )
A.高频感应冶炼炉
B.汽车的电磁式速度表
C.家用电度表(转盘式)
D.闭合线圈在匀强磁场中转动,切割磁感线产生的电流
解析:选ABC.真空冶炼炉的炉外围通入反复变化的电流,则炉内的金属中会产生涡流;汽车速度表是磁电式电流表,指针摆动时,铝框骨架中产生涡流,家用电度表(转盘式)的转盘中有涡流产生;闭合线圈在磁场中转动产生感应电流,不同于涡流,D错误.故选ABC.
3.
(2013·扬州中学高二检测)如图所示,在一蹄形磁铁下面放一个铜盘,铜盘和磁铁均可以自由绕OO′轴转动,两磁极靠近铜盘,但不接触.当磁铁绕轴转动时,铜盘将(  )
A.以相同的转速与磁铁同向转动
B.以较小的转速与磁铁同向转动
C.以相同的转速与磁铁反向转动
D.静止不动
解析:选B.因磁铁的转动,引起铜盘中磁通量发生变化而产生感应电流,进而受安培力作用而发生转动,由楞次定律可知安培力的作用阻碍相对运动,所以铜盘与磁铁同向转动,又由产生电磁感应的条件可知,铜盘中能产生电流的条件必须是磁通量发生变化.故要求铜盘转动方向与磁铁相同而转速小,不能同步转动,故选B.
4.如图所示,金属球(铜球)下端有通电的线圈,今把小球拉离平衡位置后释放,此后关于小球的运动情况是(不计空气阻力)(  )
A.做等幅振动       B.振幅不断减小
C.振幅不断增大 D.无法判定
解析:选B.小球在通电线圈磁场中运动,小球中产生涡流,所以小球要受到安培力作用阻碍它的相对运动而使它做振幅不断减小的振动.故选B.
5.
如图所示,闭合金属环从光滑曲面上h高处滚下,又沿曲面的另一侧上升.设环的初速度为0,不计摩擦,曲面处在如图所示磁场中,则(  )
A.若是匀强磁场,环滚上的高度小于h
B.若是匀强磁场,环滚上的高度等于h
C.若是非匀强磁场,环滚上的高度等于h
D.若是非匀强磁场,环滚上的高度小于h
解析:选BD.若磁场为匀强磁场,穿过环的磁通量不变,不产生感应电流,即无机械能向电能转化,机械能守恒,故A错误,B正确;若磁场为非匀强磁场,环内要产生电能,机械能减少,故C错误,D正确.故选BD.
一、选择题
1.
(单选)某磁场磁感线如图所示,有一铜盘自图示A位置落至B位置,在下落过程中,自上向下看,线圈中的涡流方向是(  )
A.始终顺时针
B.始终逆时针
C.先顺时针再逆时针
D.先逆时针再顺时针
解析:选C.把铜盘从A至B的全过程分成两个阶段处理,第一阶段是铜盘从A位置下落到具有最大磁通量的位置O,此过程中穿过铜盘的磁通量的方向向上且不断增大,由楞次定律判断感应电流方向(自上向下看)是顺时针的;第二阶段是铜盘从具有最大磁通量位置O落到B位置,此过程中穿过铜盘的磁通量的方向向上且不断减小,由楞次定律可判断感应电流方向(自上向下看)是逆时针的.故选C.
2.
(单选)如图所示,在光滑绝缘水平面上,有一铝质圆形金属球以一定的初速度通过有界匀强磁场,则从球开始进入磁场到完全穿出磁场过程中(磁场宽度大于金属球的直径),小球(  )
A.整个过程匀速运动
B.进入磁场过程中球做减速运动,穿出过程做加速运动
C.整个过程都做匀减速运动
D.穿出时的速度一定小于初速度
解析:选D.小球在磁场中运动有涡流产生,要受到阻力.
3.
(单选)如图所示,一条形磁铁从静止开始向下穿过一个用双线绕成的闭合线圈,条形磁铁在穿过线圈的过程中(  )
A.做自由落体运动
B.做减速运动
C.做匀速运动
D.做非匀变速运动
解析:选A.双线绕成的线圈由于两导线产生的磁通量相互抵消,不会产生磁场,所以磁铁将做自由落体运动.故选A.
4.
(多选)如图所示是电表中的指针和电磁阻尼器,下列说法中正确的是(  )
A.2是磁铁,在1中产生涡流
B.1是磁铁,在2中产生涡流
C.该装置的作用是使指针能够转动
D.该装置的作用是使指针能很快地稳定
解析:选AD.这是涡流的典型应用之一.当指针摆动时,1随之转动,2是磁铁,那么在1中产生涡流,2对1的安培力将阻碍1的转动.总之不管1向哪个方向转动,2对1的效果总起到阻尼作用.所以它能使指针很快地稳定下来.故选AD.
5.
(单选)(2013·郑州一中高二月考)甲、乙两个完全相同的铜环可绕固定轴OO′旋转,当给以相同的初始角速度开始转动后,由于阻力,经相同的时间后便停止;若将环置于磁感应强度B大小相同的匀强磁场中,甲环的转轴与磁场方向平行,乙环的转轴与磁场方向垂直,如图所示,当甲、乙两环同时以相同的角速度开始转动后,则下列判断正确的是(  )
A.甲环先停
B.乙环先停
C.两环同时停下
D.无法判断两环停止的先后顺序
解析:选B.甲图中没有感应电流,乙图中产生感应电流,由电磁阻尼原理可知,乙环先停下来,故选B.
6.(单选)在水平放置的光滑导轨上,沿导轨固定一个条形磁铁,如图所示,现有铜、铝和有机玻璃制成的滑块甲、乙、丙,使它们从导轨上的A点以某一初速度向磁铁滑去.各滑块在未接触磁铁前的运动情况是(  )
A.都做匀速运动
B.甲、乙做加速运动
C.甲、乙做减速运动
D.乙、丙做匀速运动
解析:选C.铜块、铝块向磁铁靠近时,穿过它们的磁通量发生变化,因此在其内部产生涡流,反过来涡流产生的感应磁场对原磁场的变化起阻碍作用,所以铜块和铝块向磁铁运动时会受阻碍而减速,有机玻璃为非金属,不产生涡流现象.故选C.
7.
(单选)弹簧上端固定,下端悬挂一根磁铁,将磁铁抬到某一高度放下,磁铁能上下振动较长时间才停下来,如图甲所示.如果在磁铁下端放一个固定的铁制金属圆环,使磁铁上、下振动穿过它,能使磁铁较快地停下来,如图乙所示.若将铁环换成超导环如图丙所示,可以推测下列叙述正确的是(  )
A.放入超导环,磁铁的机械能转化成一部分电能,而电能不会转化为内能,能维持较大电流,从而对磁铁产生更大阻力,故超导环阻尼效果明显
B.放入超导环,电能不能转化为内能,所以,没有机械能与电能的转化,超导环不产生阻尼作用
C.放入铁环,磁铁的机械能转化为电能,然后进一步转化为内能,磁铁的机械能能迅速地转化掉,具有阻尼效果
D.放入铁环,磁铁的机械能转化为热能,损失掉了,能起阻尼作用
解析:选C.放入超导环时,磁铁向下运动时,机械能一部分转化成电能,而电能不会转化为内能,在磁铁向上运动过程中,又转化为机械能,不能起阻尼作用,A、B均错误.而放入铁环后,能将机械能转化为电能,电能又进一步转化为内能,具有阻尼效果,C正确,D错误.故选C.
8.(多选)安检门是一个用于安全检查的“门”,“门框”内有线圈,线圈里通有交变电流,交变电流在“门”内产生交变磁场,金属物品通过“门”时能产生涡流,涡流的磁场又反过来影响线圈中的电流,从而引起报警.关于这个安检门的以下说法正确的是(  )
A.这个安检门也能检查出毒品携带者
B.这个安检门只能检查出金属物品携带者
C.如果这个“门框”的线圈中通上恒定电流,也能检查出金属物品携带者
D.这个安检门工作时,既利用了电磁感应现象,又利用了电流的磁效应
解析:选BD.这个安检门是利用涡流工作的,因而只能检查金属物品携带者,A错误,B正确.若“门框”的线圈中通上恒定电流,只能产生恒定磁场,它不能使块状金属产生电流,因而不能检查出金属物品携带者,C错误.安检门工作时,既利用了电磁感应现象,又利用了电流的磁效应,D正确.故选BD.
☆9.
(单选)如图所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,a、b为该磁场的竖直边界,若不计空气阻力,则(  )
A.圆环向右穿过磁场后,还能摆至原来的高度
B.在进入和离开磁场时,圆环中均有感应电流
C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大
D.圆环最终将静止在平衡位置
解析:选B.如图所示,当圆环从1位置开始下落,进入磁场时(即2位置),由于圆环内磁通量发生变化,所以有感应电流产生,由3位置离开磁场时同样有电流产生,同时,圆环本身有内阻,必然有能量的转化,即有机械能的损失,因此圆环不会摆到4位置,A错误,B正确.随着圆环进出磁场,其机械能逐渐减少,圆环摆动的幅度越来越小.当圆环只在匀强磁场中摆动时,圆环内无磁通量的变化,无感应电流产生,无机械能向电能的转化,C错误.题意中不计空气阻力,摆线的拉力垂直于圆环的速度方向,拉力对圆环不做功,所以系统的机械能守恒,圆环将在a、b间来回摆动,D错误.故选B.
☆10.
(多选)如图所示A、B为大小、形状均相同且内壁光滑但用不同材料制成的圆管,竖直固定在相同高度.两个相同的磁性小球,同时从A、B管上端的管口无初速释放,穿过A管的小球比穿过B管的小球先落到地面.下面对两管的描述中可能正确的是(  )
A.A管是用塑料制成的,B管是用铜制成的
B.A管是用铝制成的,B管是用胶木制成的
C.A管是用胶木制成的,B管是用塑料制成的
D.A管是用胶木制成的,B管是用铝制成的
解析:选AD.磁性小球通过金属圆管过程中,将圆管看做由许多金属圆环组成,小球的磁场使每个圆环中产生感应电流.根据楞次定律,该电流阻碍磁性小球的下落,小球向下运动的加速度小于重力加速度;磁性小球在塑料、胶木等非金属材料圆管中不会产生感应电流,小球仍然做自由落体运动,穿过塑料、胶木圆管的时间比穿过金属圆管的时间短,故选AD.
二、非选择题
11.
如图所示,电阻为R、质量为m的矩形导线框ABCD自某一高度自由落下,通过一有界的匀强磁场.若线框恰好以恒定速度通过磁场,在不计空气阻力的情况下,线框中产生的焦耳热是多少?已知AB、CD边长均为l,AD、BC边长均为h,磁场区域宽度为h.
解析:法一:以矩形导线框为研究对象.设线框匀速运动的速度为v,则线框穿过磁场的时间t=.
由平衡条件可知,线框匀速穿过磁场时,所受重力与安培力大小相等.设线框中的电流为I,则有
BIl=mg.由闭合电路欧姆定律,有I==
由焦耳定律,可知线框中产生的热量
Q=I2Rt=·R·=2·B·lh=2BIlh=2mgh.
法二:由能量转化与守恒定律可知,线框匀速通过磁场时,重力做的功全部转化为焦耳热,因线框重心下降的距离是2h,所以Q=mg·2h.
答案:2mgh
☆12.
(2013·合肥一中高二检测)如图所示,质量为m=100 g的铝环,用细线悬挂起来,环中央距地面高度h=0.8 m,有一质量为M=200 g的小磁铁(长度可忽略),以10 m/s 的水平速度射入并穿过铝环,落地点距铝环原位置的水平距离为3.6 m,则磁铁与铝环发生相互作用时(小磁铁穿过铝环后的运动看做平抛运动)
(1)铝环向哪边偏斜?
(2)若铝环在磁铁穿过后速度为2 m/s,在磁铁穿过铝环的整个过程中,环中产生了多少电能?(g取10 m/s2)
解析:(1)由楞次定律可知,当小磁铁向右运动时,铝环向右偏斜(阻碍相对运动).
(2)由能量守恒可得:由磁铁穿过铝环飞行的水平距离可求出穿过后的速度
v= m/s=9 m/s
W电=Mv-Mv2-mv′2=1.7 J.
答案:(1)铝环向右偏 (2)1.7 J

1.(2013·宁夏银川一中高二检测)在电磁感应现象中,下列说法中错误的是(  )
A.感应电流的磁场总是阻碍原来磁场的变化
B.闭合线框放在变化的磁场中一定能产生感应电流
C.闭合线框放在变化的磁场中做切割磁感线运动,一定能产生感应电流
D.感应电流的磁场总是跟原来磁场的方向相反
解析:选BCD.由楞次定律可知,感应电流的磁场阻碍的是原磁通量的变化,并不一定与原磁场方向相反,故选项A正确、选项D错误;若闭合线框平行于磁场放置,则无论是磁场变化,还是线框做切割磁感线的运动,穿过闭合线框的磁通量都不变,都不会有感应电流产生.所以选项B、C均错误.故选BCD.
2.
老师做了一个物理小实验让学生观察:如图所示,一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是(  )
A.磁铁插向左环,横杆发生转动
B.磁铁插向右环,横杆发生转动
C.无论磁铁插向左环还是右环,横杆都不发生转动
D.无论磁铁插向左环还是右环,横杆都发生转动
解析:选B.左环没有闭合,在磁铁插入过程中,不产生感应电流,故横杆不发生转动.右环闭合,在磁铁插入过程中,产生感应电流,横杆将发生转动.故选B.
3.
(2013·河北省冀州中学高二上学期期末)电阻R、电容C与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N极朝下,如图所示.现使磁铁开始自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是(  )
A.从a到b,上极板带正电
B.从a到b,下极板带正电
C.从b到a,上极板带正电
D.从b到a,下极板带正电
解析:选D.在磁体自由下落,N极接近线圈上端的过程中,通过线圈的磁通量方向向下且在增大,根据楞次定律可判断出线圈中感应电流的磁场方向向上,利用安培定则可判知线圈中感应电流方向为逆时针绕向(由上向下看),流过R的电流方向从b到a,电容器下极板带正电,故选D.
4.
如图所示,导体AB、CD可在水平轨道上自由滑动,且两水平轨道在中央交叉处互不相通.当导体棒AB向左移动时(  )
A.AB中感应电流的方向为A到B
B.AB中感应电流的方向为B到A
C.CD向左移动
D.CD向右移动
解析:选AD.由右手定则可判断AB中感应电流方向为A到B,从而CD中电流方向为C到D.导体CD所受安培力方向由左手定则判断知向右,所以CD向右移动.故选AD.
5.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下.在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内.当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有________(选填“收缩”或“扩张”)趋势,圆环内产生的感应电流________(选填“变大”、“变小”或“不变”).
解析:由于金属棒ab在恒力F的作用下向右运动,则abdc回路中产生逆时针方向的感应电流,则在圆环处产生垂直于纸面向外的磁场,随着金属棒向右加速运动,穿过圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小.
答案:收缩 变小
一、选择题
1.(单选)如图所示,闭合金属圆环沿垂直于磁场方向放置在匀强磁场中,将它从匀强磁场中匀速拉出,以下各种说法中正确的是(  )
A.向左拉出和向右拉出时,环中感应电流方向相反
B.向左或向右拉出时,环中感应电流方向都是沿顺时针方向
C.向左或向右拉出时,环中感应电流方向都是沿逆时针方向
D.将圆环拉出磁场过程中,环全部处在磁场中运动时,也有感应电流产生
解析:选B.圆环中感应电流的方向,取决于圆环中磁通量变化的情况,不论向左或向右将圆环拉出磁场,圆环中垂直纸面向里的磁感线都要减少,根据楞次定律可知,感应电流产生的磁场与原来磁场方向相同,即都垂直纸面向里,应用安培定则可以判断出感应电流方向沿顺时针方向.圆环全部处在磁场中运动时,虽然导线做切割磁感线运动,但环中磁通量不变,只有圆环离开磁场,环的一部分在磁场中,另一部分在磁场外时,环中磁通量才发生变化,环中才有感应电流.故选B.
2.
(多选)如图所示,光滑U形金属框架放在水平面内,上面放置一导体棒,有匀强磁场B垂直框架所在平面,当B发生变化时,发现导体棒向右运动,下列判断正确的是(  )
A.棒中电流从b→a      B.棒中电流从a→b
C.B逐渐增大 D.B逐渐减小
解析:选BD.ab棒是因“电”而“动”,所以ab棒受到的安培力向右,由左手定则可知电流方向a→b,故B正确,由楞次定律可知B逐渐减小,D正确.故选BD.
3.(单选)一磁铁自上向下运动,穿过一闭合导电回路,如图所示.当磁铁运动到a处和b处时,回路中感应电流的方向分别是(  )
A.顺时针,逆时针
B.逆时针,顺时针
C.顺时针,顺时针
D.逆时针,逆时针
解析:选B.当磁铁接近线圈时,线圈中的磁通量向下增加,由“增反减同”,得知感应电流的磁场方向向上,再由安培定则知线圈中感应电流的方向为俯视逆时针;当磁铁从线圈中穿出时,原磁场方向不变仍向下,但穿过线圈的磁通量要减少,根据楞次定律知感应电流的磁场方向向下,由安培定则知感应电流为俯视顺时针,故选B.
4.(单选)英国物理学家保罗·狄拉克在1931年利用数学公式预言磁单极子存在.如图所示,如果有一个磁单极子(单N极)从a点开始运动穿过线圈后从b点飞过.那么(  )
A.线圈中感应电流的方向是沿PMQ方向
B.线圈中感应电流的方向是沿QMP方向
C.线圈中感应电流的方向先是沿QMP方向,然后是PMQ方向
D.线圈中感应电流的方向先是沿PMQ方向,然后是QMP方向
解析:选B.将磁单极子(单N极),理解为其磁感线都是向外的,根据楞次定律和安培定则可知选项B正确.
5.(多选)两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环.当A以如图所示的方向绕中心轴转动的角速度发生变化时,B中产生如图所示方向的感应电流,则(  )
A.A可能带正电且转速减小
B.A可能带正电且转速增大
C.A可能带负电且转速减小
D.A可能带负电且转速增大
解析:选BC.选取A环研究,若A环带正电,且转速增大,则使穿过环面的磁通量向里增加,由楞次定律知,B环中感应电流的磁场方向向外,故B正确,A错误;若A环带负电,且转速增大,则使穿过环面的磁通量向外增加,由楞次定律知,B环中感应电流的磁场方向向里,B环中感应电流的方向应为顺时针方向,故D错误,C正确.故选BC.
6.(多选)如图所示,通电螺线管N置于闭合金属环M的轴线上,当N中的电流突然减小时,则(  )
A.环M有缩小的趋势
B.环M有扩张的趋势
C.螺线管N有缩短的趋势
D.螺线管N有伸长的趋势
解析:选AD.对通电螺线管,当通入的电流突然减小时,螺线管每匝间的相互吸引力也减小,所以匝间距增大;对金属环,穿过的磁通量也随之减少,由于内外磁场从两方向穿过金属环,面积减小才能阻碍磁通量的减少,金属环有缩小的趋势,故选AD.
7.(单选)如图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是(  )
A.同时向左运动,间距变大
B.同时向左运动,间距变小
C.同时向右运动,间距变小
D.同时向右运动,间距变大
解析:选B.当条形磁铁向左运动靠近两环时,两环中的磁通量都增加,根据楞次定律,两环的运动都要阻碍磁铁相对环的运动,即阻碍“靠近”,那么两环都向左运动,又由于两环中的感应电流方向相同,两平行的同向电流间有相互吸引的磁场力,因而两环间的距离要减小.故选B.
8.(单选)如图所示,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中,下列判断中正确的是(  )
A.金属环在下落过程中的机械能守恒
B.金属环在下落过程中动能的增加量小于其重力势能的减少量
C.金属环的机械能先减小后增大
D.磁铁对桌面的压力始终大于其自身的重力
解析:选B.金属环在穿越磁铁的过程中,环中产生感应电流,产生的安培力对环来讲是阻力,把机械能转化为电能,A、C错误,B正确;由牛顿第三定律知,环对磁铁的磁场力是向下的,但环到条形磁铁中间的瞬间无感应电流,此时相互作用力为0,故D错误.故选B.
☆9.(单选)如图甲所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图乙所示的变化电流,t=0时电流的方向为顺时针(如图中箭头所示),在t1~t2时间内,对于线圈B,下列说法中正确的是(  )
A.线圈B内有顺时针方向的电流,线圈有扩张的趋势
B.线圈B内有顺时针方向的电流,线圈有收缩的趋势
C.线圈B内有逆时针方向的电流,线圈有扩张的趋势
D.线圈B内有逆时针方向的电流,线圈有收缩的趋势
解析:选A.t1~t2时间内,线圈A中的电流方向为逆时针,根据安培定则可知在线圈A内部产生的磁场方向向外,线圈外部产生的磁场方向向里,线圈B的磁通量是穿出的.由于线圈A中的电流增加,故穿过线圈B的磁通量增加,因而根据楞次定律,在线圈B中将产生顺时针方向的感应电流,并且线圈B有扩张的趋势,故A正确,B、C、D都错误.
☆10.(多选)如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处在垂直于纸面向外的匀强磁场中,下列说法中正确的是(  )
A.当金属棒ab向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒ab向右匀速运动时,b点电势高于a点,c点与d点等电势
C.当金属棒ab向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒ab向右加速运动时,b点电势高于a点,d点电势高于c点
解析:选BD.当金属棒ab向右匀速运动而切割磁感线时,金属棒中产生恒定的感应电动势,由右手定则判断电流方向由a→b.根据电流从电源(ab相当于电源)正极流出沿外电路回到电源负极的特点,可以判断b点电势高于a点.又左线圈中的感应电动势恒定,则感应电流也恒定,所以穿过右线圈的磁通量保持不变,不产生感应电流,c点与d点等电势.
当金属棒ab向右做加速运动时,由右手定则可推断φb>φa,电流沿逆时针方向.由金属棒运动的速度增大,可知金属棒ab两端的电压不断增大,那么左边电路中的感应电流也不断增大,由安培定则可判断它在铁芯中的磁感线方向是沿逆时针方向的,并且场强不断增强,所以右边的线圈中向上的磁通量不断增加.由楞次定律可判断右边电路中的感应电流的方向应沿逆时针方向,而在右线圈绕成的电路中,感应电动势仅产生在绕在铁芯上的那部分线圈上.把这个线圈看做电源,由于电流是从c沿内电路(即右线圈)流向d,所以d点电势高于c点.故选BD.
二、非选择题
11.如图所示,在水平桌面上有一金属圆环,当用一条形磁铁由上向下插向圆环时,试问:
(1)圆环对桌面的压力怎样变化?
(2)圆环有收缩的趋势还是扩张的趋势?
解析:(1)根据楞次定律的推广含义“来拒去留”,圆环与磁铁之间相互排斥,从而使圆环对桌面的压力变大.
(2)根据楞次定律的推广含义“增缩减扩”,磁铁插向圆环时,穿过圆环的磁通量增加,所以圆环有收缩的趋势.
答案:见解析
12.如图所示,在两根平行长直导线M、N中,通以同方向同大小的电流I,导线框abcd和两导线在同一平面内,线框沿着与两导线垂直的方向,自右向左在两导线间匀速运动,在移动过程中,线框中感应电流方向怎样?
解析:线框在两电流中线OO′的右侧时,穿过线框的合磁通量垂直纸面穿出,线框左移,合磁通量变小,为了阻碍这个方向的磁通量减小,感应电流的方向就是abcd.
当线框跨越两电流中线OO′时,线框的合磁通量由穿出变为穿入,感应电流还是abcd.
线框再左移,线框合磁通量穿入且增加,感应电流方向还是abcd.
所以线框中感应电流方向始终是abcd.
答案:始终是abcd

1.内壁光滑的塑料管弯成的圆环平放在水平桌面上,环内有一带负电的小球,整个装置处在竖直向下的磁场中,如图所示,当磁场突然增强时小球(  )
A.沿顺时针方向运动
B.沿逆时针方向运动
C.在原位置附近往复运动
D.仍保持静止状态
解析:选A.磁场突然增强时,激发出逆时针方向的感生电场,对负电荷的作用力为顺时针,故小球沿顺时针方向运动.
2.(2013·济南高二检测)如图所示,在水平面上有一固定的U形金属框架,框架上置一金属杆ab.在垂直纸面方向有一匀强磁场,下面情况可能的是(  )
A.若磁场方向垂直纸面向外,并且磁感应强度增大时,杆ab将向右移动
B.若磁场方向垂直纸面向外,并且磁感应强度减小时,杆ab将向右移动
C.若磁场方向垂直纸面向里,并且磁感应强度增大时,杆ab将向右移动
D.若磁场方向垂直纸面向里,并且磁感应强度减小时,杆ab将向右移动
答案:BD
3.(2012·高考新课标全国卷)如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是(  )
解析:选A.依题意知,线框中感应电流方向总是沿顺时针方向,由于线框受到的安培力中左边受力较大,故以左边受力为主,由左手定则可知直导线中电流方向向上时,线框受到向左的安培力,直导线中电流方向向下时,线框受到向右的安培力,故选A.
4.(2013·济宁高二检测)如图所示,两根电阻不计的光滑平行金属导轨倾角为θ,导轨下端接有电阻R,匀强磁场垂直斜面向上.质量为m、电阻不计的金属棒ab在沿斜面与棒垂直的恒力F作用下沿导轨匀速上滑,上升高度为h,在这个过程中(  )
A.金属棒所受各力的合力所做的功等于零
B.金属棒所受各力的合力所做的功等于mgh和电阻R上产生的焦耳热之和
C.恒力F与重力的合力所做的功等于棒克服安培力所做的功与电阻R上产生的焦耳热之和
D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热
解析:选AD.棒匀速上升的过程有三个力做功:恒力F做正功,重力G、安培力F安做负功.根据动能定理:W=WF+WG+W安=0,故A正确,B错误;恒力F与重力G的合力所做的功等于导体克服安培力做的功.而导体克服安培力做的功等于回路中电能(最终转化为焦耳热)的增加量,克服安培力做功与焦耳热不能重复考虑,故C错误,D正确.故选AD.
5.如图所示,有一个电阻不计的光滑导体框架,水平放在磁感应强度为B、方向竖直向上的匀强磁场中,框架宽为l.框架上放一质量为m、电阻为R的导体棒,现用一水平恒力F作用于棒上,使棒由静止开始运动.求:
(1)棒的速度为零时,其加速度大小;
(2)棒的速度为v时,棒的加速度大小;
(3)棒的加速度为零时,其速度大小.
解析:(1)当导体棒速度为零时,导体棒中电流为零.
F=ma,a=.
(2)当棒运动速度为v时,
F安=BIL,I=,F-F安=ma′
a′=-.
(3)当棒的加速度为零时,
F=F安′,F安′=BI′l,I′=,v′=.
答案:(1) (2)- (3)
一、选择题
1.(单选)如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将(  )
A.不变          B.增大
C.减少 D.以上情况都有可能
解析:选B.当磁场增强时,将产生逆时针方向的感生电场,带正电粒子受电场力作用,动能增大.
2.(单选)如图所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN处匀速运动到M′N′的过程中,棒上感应电动势E随时间t变化的图象正确的是(  )
解析:选A.当MN进入磁场后,切割磁感线产生感应电动势E=BLv,是一定值;而刚开始运动和最后一段未切割磁感线,不产生感应电动势,故选A.
3.(单选)(2012·高考新课标全国卷)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率 的大小应为(  )
A. B.
C. D.
解析:选C.当导线框匀速转动时,设半径为r,导线框电阻为R,在很小的Δt时间内,转过圆心角Δθ=ωΔt,由法拉第电磁感应定律及欧姆定律可得感应电流I1===;当导线框不动,而磁感应强度发生变化时,同理可得感应电流I2==,令I1=I2,可得 =,故选C.
4.
(单选)(2013·成都七中高二检测)如图所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x轴上且长为2L,高为L,纸面内一边长为L的正方形导线框沿x轴正方向做匀速直线运动穿过匀强磁场区域,在t=0时刻恰好位于图所示的位置,以顺时针方向为导线框中电流的正方向,在图中,能够正确表示导线框的电流—位移(I-x)关系的是(  )
解析:选A.如图甲所示,线框运动距离x≤L时的感应电动势E=Bvx;当L≤x≤L时几何关系如图乙所示,此时感应电动势为E=Bv(2L-x)-Bv(x-L)=Bv(3L-2x),此时图线斜率的绝对值为x≤L时的2倍,由右手定则可知电流方向为顺时针,由对称性可知A正确.故选A.
5.(单选)如图所示,两块水平放置的金属板间距离为d,用导线与一个n匝线圈连接,线圈置于方向竖直向上的磁场B中.两板间有一个质量为m、电荷量为+q的油滴恰好处于平衡状态,则线圈中的磁场B的变化情况和磁通量变化率分别是(  )
A.正在增强;=
B.正在减弱;=
C.正在减弱;=
D.正在增强;=
解析:选B.油滴平衡有mg=q,UC=,电容器上极板必带负电,那么螺线管下端相当于电源正极,由楞次定律知,磁场B正在减弱,又E=n,UC=E,可得=.故选B.
6.(多选)如图所示,阻值为R的金属棒从图示位置ab分别以v1、v2的速度沿光滑导轨(电阻不计)匀速滑到a′b′位置,若 v1∶v2=1∶2,则在这两次过程中(  )
A.回路电流I1∶I2=1∶2
B.产生的热量Q1∶Q2=1∶2
C.通过任一截面的电荷量q1∶q2=1∶2
D.外力的功率P1∶P2=1∶2
解析:选AB.感应电动势为Blv,感应电流I==,大小与速度成正比,产生的热量Q=I2Rt=·=,B、l、l′、R是一样的,两次产生的热量比就是运动速度比.通过任一截面的电荷量q=I·t=·=与速度无关,所以应为1∶1.金属棒运动中受磁场力的作用,为使棒匀速运动,外力大小要与磁场力相同.则外力的功率P=Fv=BIl·v=,其中B、l、R相同,外力的功率与速度的平方成正比,应为1∶4.故选AB.
7.(单选)(2013·浙江部分学校联考)如图所示,一矩形线框以竖直向上的初速度进入只有一条水平边界的匀强磁场,磁场方向垂直纸面向里,进入磁场后上升一段高度又落下离开磁场,运动中线框只受重力和安培力作用,线框在向上、向下经过图中1、2位置时的速率按时间顺序依次为v1、v2、v3和v4,则可以确定(  )
A.v1<v2 B.v2<v3
C.v3<v4 D.v4<v1
解析:选D.由能量守恒定律可知,线框从进入磁场到离开磁场的过程中,有部分机械能转化为焦耳热,即机械能减小,则v4<v1,D正确;而线框完全在磁场中运动时,由于磁通量不变,没有感应电流,故线框只受重力作用,机械能守恒,则v2=v3,B错误;由楞次定律可知,线框进入磁场时受到的安培力方向竖直向下,重力方向竖直向下,因而做减速运动,故v1>v2,A错误;线框离开磁场时受到的安培力方向竖直向上,重力方向竖直向下,二者大小关系不能确定,故v3、v4大小关系也不能确定,C错误.故选D.
☆8.(单选)(2011·高考福建卷)如图,足够长的U形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计.金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电荷量为q时,棒的速度大小为v,则金属棒ab在这一过程中(  )
A.运动的平均速度大小为v
B.下滑的位移大小为
C.产生的焦耳热为qBLv
D.受到的最大安培力大小为sin θ
解析:选B.分析金属棒的受力,有mgsin θ-=ma,对题意进行分析可得棒做加速度减小的加速运动,故其平均速度不等于初末速度的平均值,A错误;设沿斜面下滑的位移为x,则电荷量q=I·Δt=··Δt==,解得位移x=,B正确;根据能量守恒,产生的焦耳热等于棒机械能的减少量,Q=mgxsin θ-mv2.金属棒受到的最大安培力为,C、D错误.故选B.
☆9.(单选)(2013·江南十校联考)如图所示,在磁感应强度为B的水平匀强磁场中,有两根竖直放置的平行金属导轨,顶端用一电阻R相连,两导轨所在的竖直平面与磁场方向垂直.一根金属棒ab以初速度v0沿导轨竖直向上运动,到某一高度后又向下运动返回到原出发点.整个过程中金属棒与导轨保持垂直且接触良好,导轨与金属棒间的摩擦及它们的电阻均可忽略不计.则在金属棒整个上行与整个下行的两个过程中,下列说法不正确的是(  )
A.回到出发点的速度v等于初速度v0
B.上行过程中通过R的电荷量等于下行过程中通过R的电荷量
C.上行过程中R上产生的热量大于下行过程中R上产生的热量
D.上行的运动时间小于下行的运动时间
解析:选A.金属棒切割磁感线运动,由右手定则和法拉第电磁感应定律、安培力公式可知金属棒下行和上行时的受力情况,如图所示.由能量守恒定律可知,金属棒在运动过程中,部分机械能转化为系统的焦耳热,故金属棒回到出发点的速度v小于初速度v0,A错误;设金属棒上升的最大高度为h,上升过程中金属棒所受的安培力比下降过程中的要大,R上产生的热量等于金属棒克服安培力做的功,由W=Fh可知上升过程中产生的热量比下降过程中产生的热量要大,C正确;由电荷量的定义、欧姆定律和法拉第电磁感应定律可得,运动过程中产生的电荷量q=可知,上行和下行过程中磁通量变化相等,则B正确;由牛顿第二定律可知a上>a下,由位移公式x=at2可知,上行和下行的位移大小相等,则t上<t下,D正确.故选A.
二、非选择题
10.
如图所示,l1=0.5 m,l2=0.8 m,回路总电阻为R=0.2 Ω,M=0.04 kg,导轨光滑,开始时磁感应强度B0=1 T,现使磁感应强度以ΔB/Δt=0.2 T/s的变化率均匀地增大.试求:当t为多少时,M刚好离开地面?(g取10 m/s2)
解析:回路中原磁场方向竖直向下,且磁场增强,由楞次定律可知,感应电流的磁场方向竖直向上;根据安培定则可知,AB中的感应电流的方向是A→B;由左手定则可知,AB所受安培力的方向水平向左,从而向上拉重物.
设AB中电流为I时M刚好离开地面,此时有
BIl1=Mg
I=
E==l1l2·
B=B0+t
联立以上各式解得t=5 s.
答案:5 s
11.(2013·金华高二检测)均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感应强度为B的水平匀强磁场上方h处,如图所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行.当cd边刚进入磁场时:
(1)求线框中产生的感应电动势大小;
(2)求cd两点间的电势差大小;
(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件.
解析:(1)cd边刚进入磁场时,线框速度v=
线框中产生的感应电动势E=BLv=BL.
(2)此时线框中电流I=,cd两点间的电势差
U=I·R=BL.
(3)安培力F=BIL=
根据牛顿第二定律mg-F=ma,由a=0,解得下落高度满足h=.
答案:(1)BL (2)BL (3)h=
☆12.(2012·高考天津卷)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻.一质量m=0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T.棒在水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀加速运动,当棒的位移x=9 m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:
(1)棒在匀加速运动过程中,通过电阻R的电荷量q;
(2)撤去外力后回路中产生的焦耳热Q2;
(3)外力做的功WF.
解析:(1)设棒匀加速运动的时间为Δt,回路的磁通量变化量为ΔΦ,回路中的平均感应电动势为,由法拉第电磁感应定律得=①
其中ΔΦ=Blx②
设回路中的平均电流为,由闭合电路的欧姆定律得
=③
则通过电阻R的电荷量为q=Δt④
联立①②③④式,代入数据得q=4.5 C.⑤
(2)设撤去外力时棒的速度为v,对棒的匀加速运动过程,由运动学公式得v2=2ax⑥
设棒在撤去外力后的运动过程中安培力做功为W,由动能定理得W=0-mv2⑦
撤去外力后回路中产生的焦耳热Q2=-W⑧
联立⑥⑦⑧式,代入数据得Q2=1.8 J.⑨
(3)由题意知,撤去外力前后回路中产生的焦耳热之比
Q1∶Q2=2∶1,可得Q1=3.6 J⑩
在棒运动的整个过程中,由功能关系可知
WF=Q1+Q2?
由⑨⑩?式得WF=5.4 J.
答案:(1)4.5 C (2)1.8 J (3)5.4 J

1.下列关于自感现象的说法正确的是(  )
A.自感现象是由于导体本身的电流发生变化而产生的电磁感应现象
B.线圈中自感电动势的方向总与引起自感的原电流的方向相反
C.线圈中自感电动势的大小与穿过线圈的磁通量变化的快慢有关
D.加铁芯后线圈的自感系数比没有加铁芯时要大
解析:选ACD.自感现象是导体本身电流变化使得穿过线圈的磁通量变化而产生的电磁感应现象,自感电动势与线圈的磁通量变化快慢有关,故A、C正确,自感电动势阻碍原电流的变化,并不一定与原电流反向,B错误.加铁芯后线圈的自感系数要增大,D正确.故选ACD.
2.关于线圈中自感电动势大小的说法中正确的是(  )
A.电感一定时,电流变化越大,自感电动势越大
B.电感一定时,电流变化越快,自感电动势越大
C.通过线圈的电流为零的瞬间,自感电动势为零
D.通过线圈的电流为最大值的瞬间,自感电动势最大
答案:B
3.如图所示,L为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S的瞬间会有(  )
A.灯A立即熄灭
B.灯A慢慢熄灭
C.灯A突然闪亮一下再慢慢熄灭
D.灯A突然闪亮一下再突然熄灭
解析:选A.当开关S断开时,由于通过自感线圈的电流从有变到零,线圈将产生自感电动势,但由于线圈L与灯A串联,在S断开后,不能形成闭合回路,因此灯A在开关断开后,电源供给的电流为零,灯立即熄灭.故选A.
4.如图所示,电路中电源的内阻不能忽略,R的阻值和L的自感系数都很大,A、B为两个完全相同的灯泡,当S闭合时,下列说法正确的是(  )
A.A比B先亮,然后A灭
B.B比A先亮,然后B逐渐变暗
C.A、B一起亮,然后A灭
D.A、B一起亮,然后B灭
解析:选B.本题关键是要知道纯电感线圈在电路稳定前后的作用:S闭合时,由于与A灯串联的线圈L的自感系数很大,故在线圈上产生很大的自感电动势,阻碍电流的增大,所以B比A先亮,故A、C、D错误.稳定后,由于与B灯连接的电阻很大,流过B灯支路的电流很小,所以B灯逐渐变暗,故B正确.
5.在如图所示的电路中,S闭合时流过电感线圈的电流是2 A,流过灯泡的电流是1 A,将S突然断开,则S断开前后,能正确反映流过灯泡的电流I随时间t变化的图线是图中的(  )
解析:选D.S断开后,线圈产生自感电动势与灯泡构成回路,自感线圈中电流由2 A逐渐减小为零,灯泡电流反向并由2 A逐渐减小为零,故选D.
一、选择题
1.(单选)一个线圈的电流均匀增大,则这个线圈的(  )
A.自感系数也将均匀增大
B.自感电动势也将均匀增大
C.磁通量的变化率也将均匀增大
D.自感系数、自感电动势都不变
解析:选D.自感系数是描述线圈本身特征的物理量,不随电流的变化而变化;电流均匀变化,则磁通量的变化率和自感电动势均不变,故选D.
2.(单选)(2013·天水一中高二检测)在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示.其道理是(  )
A.当电路中的电流变化时,两股导线产生的自感电动势相互抵消
B.当电路中的电流变化时,两股导线产生的感应电流相互抵消
C.当电路中的电流变化时,两股导线中原电流的磁通量相互抵消
D.以上说法都不对
解析:选C.由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股导线中的电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在该线圈中不会产生电磁感应现象,因此消除了自感,选项A、B错误,只有C正确.
3.(单选)如图所示是日光灯的电路图.日光灯主要由灯管、镇流器、启动器组成.关于日光灯的原理,下列说法不正确的是(  )
A.日光灯的启动,利用了镇流器中线圈的自感现象
B.日光灯正常发光时,镇流器起着降压限流的作用
C.日光灯正常发光后取下启动器,日光灯仍能正常工作
D.日光灯正常发光后取下启动器,日光灯不能正常工作
解析:选D.了解了日光灯的工作原理后,容易判断出A、B、C是正确的,启动器只有在启动的时候有作用,正常发光后,就不再工作.事实上,老化或劣质的启动器会造成日光灯反复启动,当发光后取下启动器反而能确保日光灯正常工作.故选D.
4.(单选)在实际生产中,有些高压直流电路中含有自感系数很大的线圈,当电路中的开关S由闭合到断开时,线圈会产生很大的自感电动势,使开关S处产生电弧,危及操作人员的人身安全.为了避免电弧的产生,可在线圈处并联一个元件,在下列设计的方案中(如图所示)可行的是(  )
解析:选D.断开开关S,A图中由于电容器被充电,开关S处仍将产生电弧;B、C图中闭合开关时,电路发生短路;而D图是利用二极管的单向导电性使线圈短路可避免开关处电弧的产生.故选D.
5.(多选)如图所示,电感线圈L的直流电阻RL=1.0 Ω,小灯泡的电阻R1=5.0 Ω,R2=4.0 Ω,接在电动势E=24 V、内电阻可忽略的电路上.闭合开关S,待电路稳定后再断开开关,则在断开开关S的瞬间(  )
A.R1支路上电流大小为4 A
B.R2支路上电流大小为4 A
C.R1支路上电流大小为6 A
D.R2支路上电流大小为6 A
解析:选AB.断开开关S的瞬间,线圈L产生自感电动势,相当于电源,与R1、R2组成闭合回路,R1、R2的电流大小相等;断开开关S后,L中的电流是从原来的值逐渐减小的,断开瞬间它的电流仍为4 A.故选AB.
6.(单选)如图所示电路中,L为电阻很小的线圈,G1和G2为零点在表盘中央的相同的电流表.当开关S闭合时,电流表G1指针偏向右方,那么当开关S断开时,将出现的现象是(  )
A.G1和G2指针都立即回到零点
B.G1指针立即回到零点,而G2指针缓慢地回到零点
C.G1指针缓慢回到零点,而G2指针先立即偏向左方,然后缓慢地回到零点
D.G1指针先立即偏向左方,然后缓慢地回到零点,而G2指针缓慢地回到零点
解析:选D.电流表指针的偏转方向与电流的流向有关.根据题意,电流自右向左时,指针向右偏.那么,电流自左向右时,指针应向左偏.当开关S断开瞬间,G1中电流立即消失,而L由于自感作用,电流不能立即消失,电流沿L、G2、G1的方向在由它们组成的闭合回路中继续维持一个短暂时间,即G2中的电流按原方向自右向左逐渐减为零,而G1中的电流和原方向相反,变为自左向右,和G2中的电流同时减为零;也就是G1指针先立即偏向左方,然后缓慢地回到零点,而G2指针缓慢地回到零点,故选D.
7.(多选)(2013·武汉外国语学校高二检测)如图所示的电路中,电键S闭合且电路达到稳定时,流过灯泡A和线圈L的电流分别为I1和I2,在电键S切断的瞬间,为使小灯泡能比原来更亮一些,然后逐渐熄灭,应(  )
A.必须使I2>I1
B.与I1、I2大小无关,但必须使线圈自感系数L足够大
C.自感系数L越大,切断时间越短,则I2也越大
D.不论自感系数L多大,电键S切断瞬间I2只能减小,不会增大
解析:选AD.电键S断开后,线圈L与灯泡A构成回路,线圈中由于自感电动势作用电流由I2逐渐减小,灯泡由于与线圈构成回路,灯泡中电流由I1变为I2然后逐渐减小,所以要想小灯泡能比原来更亮一些,应有I2>I1,故选AD.
8.
(多选)如图所示灯LA、LB完全相同,带铁芯的线圈L的电阻可忽略.则(  )
A.S闭合的瞬间,LA、LB同时发光,接着LA变暗,LB变亮,最后LA熄灭
B.S闭合的瞬间,LA不亮,LB立即亮
C.S闭合的瞬间,LA、LB都不立即亮
D.稳定后再断开S的瞬间,LB熄灭,LA闪亮一下再熄灭
解析:选AD.S接通的瞬间,L所在支路中电流从无到有发生变化,因此,L中产生的自感电动势阻碍电流增加.由于有铁芯,自感系数较大,对电流的阻碍作用也就很强,所以S接通的瞬间L中的电流非常小,即干路中的电流几乎全部流过LA,所以LA、LB会同时亮.
又由于L中电流逐渐稳定,感应电动势逐渐消失,LA逐渐变暗,线圈的电阻可忽略,对LA起到“短路”作用,因此LA最后熄灭.这个过程电路的总电阻比刚接通时小,由恒定电流知识可知,LB会比以前更亮.稳定后S断开瞬间,由于线圈有电流通过,L与LA组成回路,LA要闪亮一下再熄灭,LB立即熄灭.故选AD.
☆9.(单选)在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t的变化的图象是(  )
解析:选B.闭合开关S后,调整R,使两个灯泡L1、L2发光的亮度一样,电流为I,说明RL=R.若t′时刻再闭合S,流过电感线圈L和灯泡L1的电流迅速增大,使电感线圈L产生自感电动势,阻碍了流过L1的电流i1增大,直至达到电流为I,故A错误,B正确;而对于t′时刻再闭合S,流过灯泡L2的电流i2立即达到电流I,故C、D错误.故选B.
☆10.(多选)如图所示,电阻R1=3 Ω,R2=6 Ω,线圈的直流电阻不计.电源电动势E=5 V、内阻r=1 Ω,开始时开关S闭合.则(  )
A.断开S前,电容器带电荷量为零
B.断开S前,电容器电压为 V
C.断开S的瞬间,电容器a板上带正电
D.断开S的瞬间,电容器b板上带正电
解析:选AC.电感线圈的直流电阻不计,说明当流过电感线圈的电流不变时,可以把它当作导线;S断开的瞬间,电感线圈又相当于电源向外供电.电容器a、b两极的电压决
定了它们的带电情况.断开S前,电路稳定,L相当于无电阻的导线,则Uab=0,从而电容器的带电荷量为零,A项正确.断开S的瞬间,由于L的自感作用,L中仍然存在着一个自右向左的电流.L与C构成了回路,则L中的电流要向C充电,使a极板带正电,b极板带负电,故选AC.
二、非选择题
11.(2013·湖北黄冈中学高二检测)如图所示为研究自感实验的电路图,并用电流传感器显示出在t=1×10-3 s时断开开关前后一段时间内各时刻通过线圈L的电流(如图).已知电源电动势E=6 V,内阻不计,灯泡A的阻值为6 Ω,电阻R的阻值为2 Ω.
(1)线圈的直流电阻RL=________Ω.
(2)开关断开时,该同学观察到的现象是________,并计算开关断开瞬间线圈产生的自感电动势是______V.
解析:(1)由图象可知S闭合稳定时IL=1.5 A.
RL=-R= Ω-2 Ω=2 Ω
此时小灯泡电流I1== A=1 A.
(2)S断开后,L、R、A组成临时回路,电流由1.5 A逐渐减小,所以灯会闪亮一下再熄灭,自感电动势
E=IL(R+RL+R灯)=15 V.
答案:(1)2 (2)灯泡闪亮一下后逐渐变暗,最后熄灭 15
12.一个线圈的电流在0.001 s内有0.02 A的变化,产生50 V的自感电动势,求线圈的自感系数.如果这个电路中的电流的变化率变为40 A/s,自感电动势为多大?
解析:由E=L,得
L== H=2.5 H.
E′=L=2.5×40 V=100 V.
答案:2.5 H 100 V

1.关于某一闭合电路中感应电动势E的大小,下列说法中正确的是(  )
A.E跟穿过这一闭合电路的磁通量的大小成正比
B.E跟穿过这一闭合电路的磁通量的变化量大小成正比
C.E跟穿过这一闭合电路的磁通量的变化快慢成正比
D.某时刻穿过线圈的磁通量为零,该时刻E一定为零
解析:选C.磁通量变化量表示磁通量变化大小,磁通量变化率表示磁通量变化快慢.感应电动势与磁通量变化率成正比,和磁通量及其变化量都无必然联系.故选C.
2.
如图所示,MN、PQ为两条平行放置的金属导轨,左端接有定值电阻R,金属棒AB斜放在两导轨之间,与导轨接触良好,磁感应强度为B的匀强磁场垂直于导轨平面,设金属棒与两导轨接触点之间的距离为l,金属棒与导轨间夹角为60°,以速度v水平向右匀速运动,不计导轨和棒的电阻,则流过金属棒中的电流为(  )
A.I=         B.I=
C.I= D.I=
解析:选B.公式E=Blv适用于B、l、v三者互相垂直的情况,本题B与l,B与v是相互垂直的,但l与v不垂直,故取l垂直于v的长度lsin θ即为有效切割长度,所以E=Blvsin 60°=Blv,由欧姆定律I=得I=.故选B.
3.
如图所示,A、B两闭合线圈为同样导线绕成的,A有10匝,B有20匝,两圆线圈半径之比为2∶1.匀强磁场只分布在B线圈内.当磁场随时间均匀减弱时(  )
A.A中无感应电流
B.A、B中均有恒定的感应电流
C.A、B中感应电动势之比为2∶1
D.A、B中感应电流之比为1∶2
解析:选BD.只要穿过圆线圈内的磁通量发生变化,线圈中就有感应电动势和感应电流,因为磁场变化情况相同,有效面积也相同,所以,每匝线圈产生的感应电动势相同,又由于两线圈的匝数和半径不同,电阻值不同,根据电阻定律,单匝线圈电阻之比为2∶1,所以,感应电流之比为1∶2.故选BD.
4.某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5 T.一灵敏电压表连接在当地入海河段的两岸,河宽100 m,该河段涨潮和落潮时有海水(视为导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下列说法正确的是(  )
A.电压表记录的电压为5 mV
B.电压表记录的电压为9 mV
C.河南岸的电势较高
D.河北岸的电势较高
解析:选BD.由E=Blv=4.5×10-5×100×2 V=9×10-3 V可知A项错误,B项正确;再由右手定则可判断河北岸电势高,故C项错误,D项正确.故选BD.
5.
如图所示,导体圆环半径为a,导体棒OC可绕O点转动,C端与环接触良好且无摩擦,圆环的电阻不计,导体棒OC的电阻为r,定值电阻的阻值为R,现使OC绕O以角速度ω匀速运动,求电阻R两端的电压.
解析:OC产生的电动势为E=Bωa2,电路中电流I==,R两端电压U=IR=.
答案:
一、选择题
1.(多选)单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则OD时间范围内(  )
A.线圈中O时刻感应电动势最大
B.线圈中D时刻感应电动势为零
C.线圈中D时刻感应电动势最大
D.线圈中O到D时间内平均感应电动势为0.4 V
解析:选ABD.线圈中O到D时间内平均感应电动势E== V=0.4 V;由感应电动势的物理意义知,感应电动势的大小仅由磁通量的变化率决定,而任何时刻磁通量的变化率就是Φ -t图象上该时刻切线的斜率,不难看出O点处切线斜率最大,D点切线斜率为零,故A、B、D正确.
2.
(单选)(2013·承德实验中学高二月考)如图所示,导体AB的长为2R,绕O点以角速度ω匀速转动,OB为R,且OBA三点在一条直线上,有一磁感应强度为B的匀强磁场充满转动平面且与转动平面垂直,那么AB两端的电势差为(  )
A.BωR2 B.2BωR2
C.4BωR2 D.6BωR2
解析:选C.A点线速度vA=ω·3R,B点线速度vB=ω·R,AB棒切割磁感线的平均速度==2ω·R,由E=Blv得A、B两端的电势差为4BωR2,故选C.
3.(单选)在匀强磁场中,有一个接有电容器的单匝导线回路,如图所示,已知C=30 μF,L1=5 cm,L2=8 cm,磁场以5×10-2 T/s的速率增加,则(  )
A.电容器上极板带正电,带电荷量为6×10-5 C
B.电容器上极板带负电,带电荷量为6×10-5 C
C.电容器上极板带正电,带电荷量为6×10-9 C
D.电容器上极板带负电,带电荷量为6×10-9 C
解析:选C.电容器两极板间的电势差U等于感应电动势E,由法拉第电磁感应定律,可得E=·L1L2=2×10-4 V,电容器的带电荷量Q=CU=CE=6×10-9 C,再由楞次定律可知上极板的电势高,带正电,故选C.
4.(单选)如图,一个半径为L的半圆形硬导体AB以速度v在水平U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路电阻为R0,半圆形硬导体AB的电阻为r,其余电阻不计,则半圆形导体AB切割磁感线产生感应电动势的大小及AB之间的电动势差分别为(  )
A.BLv  B.πBLv BLv
C.BLv 2BLv D.2BLv 
解析:选D.AB的等效长度是直径2L,故感应电动势为2BLv,AB间的电势差是外电压,根据闭合电路欧姆定律,U=R0=.故选D.
5.(单选)物理实验中常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量,如图所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R.若将线圈放在被测匀强磁场中,开始线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q,由上述数据可测出被测磁场的磁感应强度为(  )
A. B.
C. D.
解析:选A.q=Δt=·Δt=n=n=n,所以B=.故选A.
6.(多选)(2013·武汉外国语学校高二检测)如图所示,两条平行虚线之间存在匀强磁场,磁场方向垂直纸面向里,虚线间的距离为l.金属圆环的直径也是l.圆环从左边界进入磁场,以垂直于磁场边界的恒定速度v穿过磁场区域.则下列说法正确的是(  )
A.感应电流的大小先增大后减小再增大再减小
B.感应电流的方向先逆时针后顺时针
C.金属圆环受到的安培力先向左后向右
D.进入磁场时感应电动势平均值=πBlv
解析:选AB.在圆环进入磁场的过程中,通过圆环的磁通量逐渐增大,根据楞次定律可知感应电流的方向为逆时针方向,感应电动势E=Blv,有效长度先增大后减小,所以感应电流先增大后减小,同理可以判断出磁场时的情况,A、B两项正确;根据左手定则可以判断,进入磁场和出磁场时受到的安培力都向左,C项错误;进入磁场时感应电动势平均值===πBlv,D项错误.故选AB.
7.(单选)如图所示,用粗细均匀的阻值为R的金属丝做成面积为S的圆环,它有一半处于匀强磁场中,磁场方向垂直纸面向里,磁场均匀变化,磁感应强度大小随时间的变化率=k(k>0).ab为圆环的一条直径,则下列说法正确的是(  )
A.圆环中产生顺时针方向的感应电流
B.圆环具有扩张的趋势
C.圆环中感应电流的大小为
D.图中a、b两点间的电压大小为kS
解析:选C.由变化率=k(k>0)可知磁场均匀增强,根据楞次定律可知,圆环中产生逆时针方向的感应电流,圆环具有收缩的趋势,A、B错误;根据法拉第电磁感应定律可知,圆环内产生的感应电动势大小为E==,所以圆环中感应电流的大小为,C正确;圆环处于磁场内的一半相当于电源,外面的一半相当于外电路,题图中a、b两点间的电压是路端电压,应为kS,D错误.故选C.
☆8.(单选)(2013·余杭实验中学高二检测)一闭合圆形线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度随时间均匀变化.在下列方法中,能使线圈中感应电流增加一倍的是(  )
A.把线圈匝数增大一倍
B.把线圈面积增大一倍
C.把线圈半径增大一倍
D.把线圈匝数减少到原来的一半
解析:选C.设感应电流为I,电阻为R,匝数为n,线圈半径为r,线圈面积为S,导线横截面积为S′.
由法拉第电磁感应定律知E=n=n
由闭合电路欧姆定律知I=
由电阻定律知R=ρ
则I=cos 30°.
其中、ρ、S′均为恒量,所以I∝r,故选C.
☆9.(多选)如图所示,三角形金属导轨EOF上放有一金属杆AB,在外力作用下,使AB保持与OF垂直,以速度v匀速从O点开始右移,若导轨与金属杆均为粗细相同的同种金属制成,则下列判断正确的是(  )
A.电路中的感应电流大小不变
B.电路中的感应电动势大小不变
C.电路中的感应电动势逐渐增大
D.电路中的感应电流逐渐减小
解析:选AC.导体杆从O开始到如题图所示位置所经历时间设为t,∠EOF=θ,则导体杆切割磁感线的有效长度l⊥=OBtan θ,故E=Bl⊥v⊥=Bv·vttan θ=Bv2·ttan θ,即电路中电动势与时间成正比,C正确;电路中电流
I==
而l=△OAB的周长=OB+AB+OA=vt+vt·tan θ+=vt
所以I==恒量,所以A正确.故选AC.
二、非选择题
10.如图所示,长为L的导线下悬挂一小球,在竖直向上的匀强磁场中做圆锥摆运动,圆锥的偏角为θ,摆球的角速度为ω,磁感应强度为B,求金属导线中产生的感应电动势大小.
解析:导体在磁场中转动,导线本身与磁场不垂直,应考虑切割磁感线的有效长度.
导线的有效长度为L′=Lsin θ,
据E=BL′2ω知,电动势E=BL2ωsin2θ.
答案:BL2ωsin2θ
11.(2013·东城高二检测)如图甲所示,回路中有一个C=60 μF的电容器,已知回路的面积为1.0×10-2 m2,垂直穿过回路的磁场的磁感应强度B随时间t的变化图象如图乙所示,求:
(1)t=5 s时,回路中的感应电动势;
(2)电容器上的电荷量.
解析:(1)由题图可知:在前6 s内= T/s,
E==S=0.67×10-2 V.
(2)电容器的电量Q=CE,Q=4×10-7 C.
答案:(1)0.67×10-2 V (2)4×10-7 C
☆12.如图所示,PN与QM两平行金属导轨相距1 m,电阻不计,两端分别接有电阻R1和R2,且R1=6 Ω,ab导体的电阻为2 Ω,在导轨上可无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度为1 T.现ab以恒定速度v=3 m/s匀速向右移动,这时ab杆上消耗的电功率与R1、R2消耗的电功率之和相等,求:
(1)R2的阻值;
(2)R1与R2消耗的电功率.
解析:(1)内外功率相等,则内外电阻相等
=2 Ω
解得R2=3 Ω.
(2)棒切割磁感线,相当于电源,
E=BLv=1×1×3 V=3 V
总电流I== A=0.75 A
路端电压U=IR外=0.75×2 V=1.5 V
P1== W=0.375 W
P2== W=0.75 W.
答案:(1)3 Ω (2)0.375 W 0.75 W