中小学教育资源及组卷应用平台
专题10 二次函数
【考情预测】
二次函数是非常重要的函数,年年都会考查,总分值为18分左右,预计2023年浙江各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查。
【考点梳理】
1、二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
2、二次函数解析式的三种形式
(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).
(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).
(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.
3、二次函数的图象及性质
解析式 二次函数y=ax2+bx+c(a,b,c是常数,a≠0)
对称轴 x=–
顶点 (–,)
a的符号 a>0 a<0
图象
开口方向 开口向上 开口向下
最值 当x=–时,y最小值= 当x=–时,y最大值=
最点 抛物线有最低点 抛物线有最高点
增减性 当x<–时,y随x的增大而减小;当x>–时,y随x的增大而增大 当x<–时,y随x的增大而增大;当x>–时,y随x的增大而减小
4、抛物线的平移
二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.
5、二次函数与一元二次方程的关系
1)二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).
2)ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.
3)(1)b2–4ac>0 方程有两个不相等的实数根,抛物线与x轴有两个交点;
(2)b2–4ac=0 方程有两个相等的实数根,抛物线与x轴有且只有一个交点;
(3)b2–4ac<0 方程没有实数根,抛物线与x轴没有交点.
6、二次函数的综合
1)函数存在性问题
解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.
2)函数动点问题
(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.
(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.
(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.
【重难点突破】
考点1. 二次函数的有关概念
【解题技巧】
1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.
2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.
3.二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.
【典例精析】
例1(2023·浙江·中考模拟)二次函数的图象的对称轴是( )
A. B. C. D.
【答案】A
【分析】将二次函数写成顶点式,进而可得对称轴.
【详解】解:.
二次函数的图象的对称轴是.故选A.
【点睛】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.
例2.(2021·浙江中考真题)如图,已知经过原点的抛物线与轴交于另一点A(2,0).
(1)求的值和抛物线顶点的坐标;(2)求直线的解析式.
【答案】(1),M (1,-2);(2)
【分析】(1)将A(2,0)代入抛物线的解析式,可求得m的值,再配成顶点式即可求解;
(2)利用待定系数法即可求得直线AM的解析式.
【详解】解 (1)∵抛物线过点A(2,0),
,解得,,,∴顶点M的坐标是(1,-2);
(2)设直线AM的解析式为,
∵图象过A(2,0),M (1,-2),,解得,∴直线AM的解析式为.
【点睛】本题考查了待定系数法求函数解析式,二次函数的图象和性质,解题的关键是灵活运用所学知识解决问题.
【变式训练】
变式1.(2022·黑龙江哈尔滨·中考真题)抛物线的顶点坐标是( )
A. B. C. D.
【答案】B
【分析】根据二次函数的顶点式可得顶点坐标为即可得到结果.
【详解】∵二次函数解析式为 ,∴顶点坐标为;故选:B.
【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.
变式2.(2022·黑龙江牡丹江·中考真题)若二次函数的图象经过点P(-2,4),则该图象必经过点( )
A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)
【答案】A
【详解】根据点在曲线上,点的坐标满足方程的关系,将P(-2,4)代入,得,
∴二次函数解析式为.∴所给四点中,只有(2,4)满足.故选A.
变式3.(2023·安徽·中考模拟)若是关于x的二次函数,则m=_______.
【答案】1
【分析】根据二次函数的定义列出方程,解方程后综合考虑取值即可.
【详解】解:∵是关于x的二次函数,
∴,解得:,∴.故答案为:1.
【点睛】此题考查了二次函数定义,解题的关键是熟练掌握二次函数定义.二次函数定义:一般地,把形如(a、b、c是常数,且)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项.x为自变量,y为因变量.
考点2. 二次函数的图象
【解题技巧】
二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.
【典例精析】
例1.(2022·山东泰安·中考真题)如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A. B. C. D.
【答案】B
【详解】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.
详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;
B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;
C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误. 故选B.
点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
例2.(2022·广西·中考真题)已知反比例函数的图象如图所示,则一次函数和二次函数在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
【答案】D
【分析】先由反比例函数图象得出b>0,再分当a>0,a<0时分别判定二次函数图象符合的选项,在符合的选项中,再判定一次函数图象符合的即可得出答案.
【详解】解:∵反比例函数的图象在第一和第三象限内,∴b>0,
若a<0,则->0,所以二次函数开口向下,对称轴在y轴右侧,故A、B、C、D选项全不符合;
当a>0,则-<0时,所以二次函数开口向上,对称轴在y轴左侧,故只有C、D两选项可能符合题意,由C、D两选图象知,c<0,又∵a>0,则-a<0,当c<0,a>0时,一次函数y=cx-a图象经过第二、第三、第四象限,故只有D选项符合题意.故选:D.
【点睛】本题考查函数图象与系数的关系,熟练掌握反比例函数图象、一次函数图象、二次函数图象与系数的关系是解题的关键.
3.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是( )
A.B.C.D.
【答案】D
【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.
【详解】当0≤t≤1时,∵正方形ABCD 的边长为2,点O为正方形的中心,∴直线EO垂直BC,
∴点P到直线BC的距离为2-t,BQ=t,∴S=;
当1<t≤2时,∵正方形ABCD 的边长为2,点F分别为边,中点,点O为正方形的中心,
∴直线OF∥BC,∴点P到直线BC的距离为1,BQ=t,∴S=;故选D.
【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.
【变式训练】
变式1.(2022·湖南株洲·中考真题)已知二次函数,其中、,则该函数的图象可能为( )
A. B.C. D.
【答案】C
【分析】利用排除法,由得出抛物线与y轴的交点应该在y轴的负半轴上,排除A选项和D选项,根据B选项和C选项中对称轴,得出,抛物线开口向下,排除B选项,即可得出C为正确答案.
【详解】解:对于二次函数,
令,则,∴抛物线与y轴的交点坐标为
∵,∴,∴抛物线与y轴的交点应该在y轴的负半轴上,
∴可以排除A选项和D选项;B选项和C选项中,抛物线的对称轴,
∵ ,∴,∴抛物线开口向下,可以排除B选项,
【点睛】本题考查二次函数的图象的性质,熟练掌握二次函数图象与三个系数之间的关系是解题关键.
变式2.(2022·黑龙江绥化·中考真题)已知二次函数的部分函数图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的图象大致是( )
A.B.C.D.
【答案】B
【分析】根据的函数图象可知,,,即可确定一次函数图象,根据时,,即可判断反比例函数图象,即可求解.
【详解】解:∵二次函数的图象开口向上,则,与轴存在2个交点,则,
∴一次函数图象经过一、二、三象限,
二次函数的图象,当时,,
反比例函数图象经过一、三象限 结合选项,一次函数与反比例函数在同一平面直角坐标系中的图象大致是B选项故选B
【点睛】本题考查了一次函数,二次函数,反比例函数的图象与性质,掌握二次函数的图象与系数的关系是解题的关键.
变式3.(2022·贵州铜仁·中考真题)如图,等边、等边的边长分别为3和2.开始时点A与点D重合,在上,在上,沿向右平移,当点D到达点B时停止.在此过程中,设、重合部分的面积为y,移动的距离为x,则y与x的函数图象大致为( )
A. B.C. D.
【答案】C
【分析】当在内移动时,、重合部分的面积不变,当移出时,计算出,得到,从而得到答案.
【详解】如下图所示,当E和B重合时,AD=AB-DB=3-2=1,
∴ 当移动的距离为时,在内,,
当E在B的右边时,如下图所示,设移动过程中DF与CB交于点N,过点N坐NM垂直于AE,垂足为M,
根据题意得AD=x,AB=3,∴DB=AB-AD=3-x,
∵,,∴是等边三角形,∴,
∵,∴,∵,∴,
∴,∴,
∴当时,是一个关于的二次函数,且开口向上,
∵当时,,当时,,故选:C.
【点睛】本题考查图形移动、等边三角形的性质,二次函数的性质,根据题意得到二次函数的解析式是解题的关键.
考点3. 二次函数的图象与字母系数的关系
【典例精析】
例1.(2022·四川达州·中考真题)二次函数的部分图象如图所示,与y轴交于,对称轴为直线.以下结论:①;②;③对于任意实数m,都有成立;④若,,在该函数图象上,则;⑤方程(,k为常数)的所有根的和为4.其中正确结论有( )
A.2 B.3 C.4 D.5
【答案】A
【分析】根据图象可判断,即可判断①正确;令,解得,根据图得,,再由顶点坐标的纵坐标的范围即可求出a的范围,即可判断②错误;由代入变形计算即可判断③错误;由抛物线的增减性和对称性即可判断④错误;分类讨论当时,当时,再根据一元二次方程根与系数的关系进行求解即可判断⑤正确.
【详解】二次函数的部分图象与y轴交于,对称轴为直线,抛物线开头向上,,,,故①正确;
令,解得,
由图得,,解得,
抛物线的顶点坐标为,由图得,,解得,,故②错误;
,可化为,即,,
若成立,则,故③错误;当时,随的增大而减小,
,,对称轴为直线,时与时所对应的值相等,
,故④错误;
,当时,,,
当时,,,
,故⑤正确;
综上,正确的个数为2,故选:A.
【点睛】本题考查了二次函数图象和性质,一元二次方程求根公式,根与系数的关系等,熟练掌握知识点,能够运用数形结合的思想是解题的关键.
例2.(2022·四川广元·中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
【答案】C
【分析】由图象可知,对称轴为直线,与x轴的一个交点为,然后可得,则有,进而可判断(1)(2)(3),最后根据函数的性质可进行判断(4)(5).
【详解】解:由图象及题意得:,对称轴为直线,与x轴的一个交点为,
∴,∴,即,
∴,故(1)(3)正确;
由图象可知当x=-2时,则有,即,故(2)错误;
∵点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,
∴根据二次函数开口向下,离对称轴的距离越近,其所对应的函数值越大,
∴,故(4)错误;
由图象可知当x=2时,该函数有最大值,最大值为,
∴当x=m时,(m为常数),则有,
∴,即为,故(5)正确;
综上所述:正确的有(1)(3)(5)共3个;故选C.
【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.
【变式训练】
变式1.(2022·四川成都·中考真题)如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )
A. B.当时,的值随值的增大而增大
C.点的坐标为 D.
【答案】D
【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.
【详解】解:A、根据图像可知抛物线开口向下,即,故该选项不符合题意;
B、根据图像开口向下,对称轴为,当,随的增大而减小;当,随的增大而增大,故当时,随的增大而增大;当,随的增大而减小,故该选项不符合题意;
C、根据二次函数的图像与轴相交于,两点,对称轴是直线,可得对称轴,解得,即,故该选项不符合题意;
D、根据可知,当时,,故该选项符合题意;故选:D.
【点睛】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与轴交点得到是解决问题的关键.
变式2.(2022·湖北随州·中考真题)如图,已知开口向下的抛物线与x轴交于点对称轴为直线.则下列结论:①;②;③函数的最大值为;④若关于x的方数无实数根,则.正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】由图象可知,图像开口向下,a<0,对称轴为x=1,故,故b>0,且,则 图象与y轴的交点为正半轴,则c>0,由此可知abc<0,故①错误,由图象可知当x=1时,函数取最大值,将x=1,代入,中得:,计算出函数图象与x轴的另一交点为(3,0)设函数解析式为:,将交点坐标代入得化简得:,将x=1,代入可得:,故函数的最大值为-4a,、变形为:要使方程无实数根,则,将c=-3a,,代入得:,因为a<0,则,则,综上所述,结合以上结论可判断正确的项.
【详解】解:由图象可知,图像开口向下,a<0,对称轴为x=1,故,故b>0,且,则故②正确,∵图象与y轴的交点为正半轴,∴c>0,则abc<0,故①错误,
由图象可知当x=1时,函数取最大值,将x=1,代入,中得:,
由图象可知函数与x轴交点为(﹣1,0),对称轴为将x=1,故函数图象与x轴的另一交点为(3,0),
设函数解析式为:,
将交点坐标代入得:,故化简得:,
将x=1,代入可得:,故函数的最大值为-4a,故③正确,
变形为:要使方程无实数根,则,将c=-3a,,代入得:,因为a<0,则,则,综上所述,故④正确,则②③④正确,故选C.
【点睛】本题考查二次函数的一般式,二次函数的交点式,二次函数的最值,对称轴,以及交点坐标掌握数形结合思想是解决本题的关键.
变式3.(2021·浙江中考真题)已知抛物线与轴的交点为和,点,是抛物线上不同于的两个点,记的面积为的面积为.有下列结论:①当时,;②当时,;③当时,;④当时,.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【答案】A
【分析】通过和的不等关系,确定,在抛物线上的相对位置,逐一分析即可求解.
【详解】解:∵抛物线与轴的交点为和,
∴该抛物线对称轴为,
当时与当时无法确定,在抛物线上的相对位置,
故①和②都不正确;
当时,比离对称轴更远,且同在x轴上方或者下方,
∴,∴,故③正确;
当时,即在x轴上到2的距离比到的距离大,且都大于1,
可知在x轴上到2的距离大于1,到2的距离不能确定,
所以无法比较与谁离对称轴更远,故无法比较面积,故④错误;故选:A.
【点睛】本题考查二次函数的图象与性质,掌握二次函数的对称性是解题的关键.
考点4. 二次函数的性质
【解题技巧】
二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.
【典例精析】
例1.(2022·山东泰安·中考真题)抛物线上部分点的横坐标x,纵坐标y的对应值如表:
x -2 -1 0 6
y 0 4 6 1
下列结论不正确的是( )
A.抛物线的开口向下 B.抛物线的对称轴为直线
C.抛物线与x轴的一个交点坐标为 D.函数的最大值为
【答案】C
【分析】利用待定系数法求出抛物线解析式,由此逐一判断各选项即可
【详解】解:由题意得,解得,
∴抛物线解析式为,
∴抛物线开口向下,抛物线对称轴为直线,该函数的最大值为,故A、B、D说法正确,不符合题意;令,则,解得或,
∴抛物线与x轴的交点坐标为(-2,0),(3,0),故C说法错误,符合题意;故选C.
【点睛】本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.
例2.(2022·四川自贡·中考真题)已知A( 3, 2) ,B(1, 2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥ 2 ;②当x>0时,一定有y随x的增大而增大;
③若点D横坐标的最小值为 5,点C横坐标的最大值为3;
④当四边形ABCD为平行四边形时,a=.其中正确的是( )
A.①③ B.②③ C.①④ D.①③④
【答案】D
【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,可判断①;根据二次函数的增减性判断②;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断④.
【详解】解:∵点A,B的坐标分别为(-3,-2)和(1,-2),∴线段AB与y轴的交点坐标为(0,-2),
又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c) ,
∴C≥-2,(顶点在y轴上时取“=”),故①正确;
.
∵抛物线的顶点在线段AB上运动,开口向上,
∴当x>1时,一定有y随x的增大而增大,故②错误;
若点D的横坐标最小值为-5,则此时对称轴为直线x=-3,
根据二次函数的对称性,点C的横坐标最大值为1+2=3,故③正确;
令y=0,则ax2+bx+c=0,设该方程的两根为x1,x2,则x1+x2=-,x1x2=,
∴CD2=( x1-x2) 2=( x1+x2) 2-4x1x2,
根据顶点坐标公式,,∴,即,
∵四边形ACDB为平行四边形,∴CD=AB=1-(-3)=4,
∴=42=16,解得a=,故④正确;综上所述,正确的结论有①③④.故选:D.
【点睛】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y轴上的情况.
【变式训练】
变式1.(2022·浙江宁波·中考真题)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为( )
A. B. C. D.
【答案】B
【分析】根据y1<y2列出关于m的不等式即可解得答案.
【详解】解:∵点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上,
∴y1=(m-1-1)2+n=(m-2)2+n,y2=(m-1)2+n,
∵y1<y2,∴(m-2)2+n<(m-1)2+n,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>,故选:B.
【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.
变式2.(2022·陕西·中考真题)已知二次函数的自变量对应的函数值分别为,,.当,,时,,,三者之间的大小关系是( )
A. B. C. D.
【答案】D
【分析】先将抛物线配成顶点式,求出对称轴为,再求出抛物线与x轴的两个交点坐标为和,根据开口向上即可判断.
【详解】解:抛物线,∴对称轴,顶点坐标为,
当时,,解得或,
∴抛物线与轴的两个交点坐标为:,,
∴当,,时,,故选:.
【点睛】本题考查抛物线的性质,熟练掌握抛物线的性质是解决问题的关键,记住在抛物线的左右函数的增减性不同,确定对称轴的位置是关键,属于中考常考题型.
变式3.(2022·湖南岳阳·中考真题)已知二次函数(为常数,),点是该函数图象上一点,当时,,则的取值范围是( )
A.或 B. C.或 D.
【答案】A
【分析】先求出抛物线的对称轴及抛物线与轴的交点坐标,再分两种情况:或,根据二次函数的性质求得的不同取值范围便可.
【详解】解:∵二次函数,
∴对称轴为,抛物线与轴的交点为,
∵点是该函数图象上一点,当时,,
∴①当时,对称轴,
此时,当时,,即,解得;
②当时,对称轴,
当时,随增大而减小,则当时,恒成立;
综上,的取值范围是:或.故选:A.
【点睛】本题考查了二次函数的性质,关键是分情况讨论.
考点5. 二次函数的平移
【解题技巧】
1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关.
2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.
3.抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(x–h)2+k的顶点是(h,k).
4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.
【典例精析】
例1.(2022·浙江湖州·中考真题)把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是( )
A.y=-3 B.y=+3 C.y= D.y=
【答案】B
【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.
【详解】∵抛物线y=x2向上平移3个单位,
∴平移后的抛物线的解析式为:y=x2+3.故答案为:B.
【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.
例2.(2021·浙江宁波市·中考真题)如图,二次函数(a为常数)的图象的对称轴为直线.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.
【答案】(1);(2)
【分析】(1)把二次函数化为一般式,再利用对称轴:,列方程解方程即可得到答案;
(2)由(1)得:二次函数的解析式为:,再结合平移后抛物线过原点,则 从而可得平移方式及平移后的解析式.
【详解】解:(1).
∵图象的对称轴为直线,∴,∴.
(2)∵,∴二次函数的表达式为,
∴抛物线向下平移3个单位后经过原点,
∴平移后图象所对应的二次函数的表达式为.
【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,二次函数图像的平移,熟练掌握二次函数的基础知识是解题的关键.
【变式训练】
变式1.(2022·江苏无锡·中考真题)把二次函数y=x2+4x+m的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:_____.
【答案】m>3
【分析】先求得原抛物线的顶点坐标为(-2,m-4),再求得平移后的顶点坐标为(1,m-3),根据题意得到不等式m-3>0,据此即可求解.
【详解】解:∵y=x2+4x+m=(x+2)2+m-4,此时抛物线的顶点坐标为(-2,m-4),
函数的图象向上平移1个单位长度,再向右平移3个单位长度后的顶点坐标为(-2+3,m-4+1),
即(1,m-3),
∵平移后所得抛物线与坐标轴有且只有一个公共点,∴m-3>0,解得:m>3,故答案为:m>3.
【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.
变式2.(2022·贵州黔东南·中考真题)在平面直角坐标系中,将抛物线先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是_______.
【答案】
【分析】先把抛物线配方为顶点式,求出定点坐标,求出旋转后的抛物线,再根据“上加下减,左加右减”的法则进行解答即可.
【详解】解:∵,∴抛物线的顶点为(-1,-2),
将抛物线先绕原点旋转180°抛物线顶点为(1,2),
旋转后的抛物线为,再向下平移5个单位,即.
∴新抛物线的顶点(1,-3)故答案是:(1,-3).
【点睛】本题考查抛物线的图象与几何变换,熟知函数图象旋转与平移的法则是解答此题的关键.
变式3.(2022·广西玉林·中考真题)小嘉说:将二次函数的图象平移或翻折后经过点有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度
③向下平移4个单位长度 ④沿x轴翻折,再向上平移4个单位长度
你认为小嘉说的方法中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【分析】根据二次函数图象的平移可依此进行求解问题.
【详解】解:①将二次函数向右平移2个单位长度得到:,
把点代入得:,所以该平移方式符合题意;
②将二次函数向右平移1个单位长度,再向下平移1个单位长度得到:,
把点代入得:,所以该平移方式符合题意;
③将二次函数向下平移4个单位长度得到:,
把点代入得:,所以该平移方式符合题意;
④将二次函数沿x轴翻折,再向上平移4个单位长度得到:,把点代入得:,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D.
【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.
例4.(2022·浙江舟山·中考真题)已知抛物线:()经过点.
(1)求抛物的函数表达式.(2)将抛物线向上平移m()个单位得到抛物线.若抛物线的顶点关于坐标原点O的对称点在抛物线上,求m的值.(3)把抛物线向右平移n()个单位得到抛物线.已知点,都在抛物线上,若当时,都有,求n的取值范围.
【答案】(1)(2)(3)
【分析】(1)根据待定系数法即可求解.(2)根据平移的性质即可求解.(3)根据平移的性质对称轴为直线,,开口向上,进而得到点P在点Q的左侧,分两种情况讨论:①当P,Q同在对称轴左侧时,②当P,Q在对称轴异侧时,③当P,Q同在对称轴右侧时即可求解.
(1)解:将代入得:,解得:,∴抛物线的函数表达式:.
(2)∵将抛物线向上平移m个单位得到抛物线,
∴抛物线的函数表达式:.∴顶点,
∴它关于O的对称点为,将代入抛物线得:,∴.
(3)把向右平移n个单位,得:,对称轴为直线,,开口向上,
∵点,,由得:,∴点P在点Q的左侧,
①当P,Q同在对称轴左侧时,,即,∵,∴,
②当P,Q在对称轴异侧时,∵,∴,解得:,
③当P,Q同在对称轴右侧时,都有(舍去),综上所述:.
【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象平移变换,熟练掌握待定系数法及平移的性质结,巧妙运用分类讨论思想是解题的关键.
考点6. 二次函数与一元二次方程、不等式的综合
【解题技巧】
抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定.
1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.
2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.
3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).
【典例精析】
例1.(2022·浙江绍兴·中考真题)已知抛物线的对称轴为直线,则关于x的方程的根是( )
A.0,4 B.1,5 C.1,-5 D.-1,5
【答案】D
【分析】根据抛物线的对称轴为直线可求出m的值,然后解方程即可.
【详解】抛物线的对称轴为直线,
,解得,关于x的方程为,
,解得,故选:D.
【点睛】本题考查二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.
例2.(2022·山东泰安·中考真题)一元二次方程根的情况是( )
A.有一个正根,一个负根 B.有两个正根,且有一根大于9小于12
C.有两个正根,且都小于12 D.有两个正根,且有一根大于12
【答案】D
【分析】将方程转化为一次函数与二次函数的交点问题求解.画出函数图象,找准图象与坐标轴的交点,结合图象可选出答案.
【详解】解:如图,
由题意二次函数y=,与y交与点(0,12)与x轴交于(-4,0)(12,0),一次函数y=,与y交与点(0,15)与x轴交于(9,0)
因此,两函数图象交点一个在第一象限,一个在第四象限,所以两根都大于0,且有一根大于12故选:D.
【点睛】本题考查了抛物线与x轴的交点,利用数形结合的思想,画图象时找准关键点,与坐标轴的交点,由图象得结果.
【变式训练】
变式1.(2022·山东潍坊·中考真题)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为( )
A. B. C. D.4
【答案】B
【分析】根据抛物线与x轴只有一个公共点,得到根的判别式等于0,即可求出c的值.
【详解】解:∵y=x2+x+c与x轴只有一个公共点,
∴x2+x+c=0有两个相等的实数根,∴△=1-4c=0,解得:c=.故选:B.
【点睛】此题考查了抛物线与x轴的交点,弄清根的判别式的意义是解本题的关键.
变式2.(2022·黑龙江大庆·中考真题)已知函数的图象与坐标轴恰有两个公共点,则实数m的值为____________.
【答案】1或
【分析】函数图象与坐标轴恰有两个公共点,则分两种情况:第一种情况,函数图象过原点;第二种情况,函数图象与x轴只有一个交点,分别计算即可
【详解】当函数图象过原点时,函数的图象与坐标轴恰有两个公共点,
此时满足,解得;
当函数图象与x轴只有一个交点且与坐标轴y轴也有一个交点时,
此时满足,解得或,
当是,函数变为与y轴只有一个交点,不合题意;
综上可得,或时,函数图象与坐标轴恰有两个公共点.故答案为:1或
【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质.
变式3.(2022·湖北武汉·中考真题)已知抛物线(,,是常数)开口向下,过,两点,且.下列四个结论:①;②若,则;
③若点,在抛物线上,,且,则;
④当时,关于的一元二次方程必有两个不相等的实数根.
其中正确的是_________(填写序号).
【答案】①③④
【分析】首先判断对称轴,再由抛物线的开口方向判断①;由抛物线经过A(-1,0),,当时,,求出,再代入判断②,抛物线,由点,在抛物线上,得,,把两个等式相减,整理得,通过判断,的符号判断③;将方程写成a(x-m)(x+1)-1=0,整理,得,再利用判别式即可判断④.
【详解】解:抛物线过,两点,且,,
,,即,
抛物线开口向下,, ,故①正确;
若,则,
,,故②不正确;
抛物线,点,在抛物线上,∴,,把两个等式相减,整理得, ,,,
,,,故③正确;
依题意,将方程写成a(x-m)(x+1)-1=0,整理,得,
,
,,,,, 故④正确.
综上所述,①③④正确.故答案为;①③④.
【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.
考点7. 二次函数的实际应用
【解题技巧】在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.考察背景主要有:经济问题;物体运动轨迹问题;拱桥问题等
【典例精析】
例1.(2022·浙江宁波·中考真题)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?
【答案】(1)(,且x为整数)
(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克
【分析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得求得解析式;
(2)设每平方米小番茄产量为W千克,由产量=每平方米种植株数×单株产量即可列函数关系式,由二次函数性质可得答案.
(1)解:∵∵每平方米种植的株数每增加1株,单株产量减少0.5千克,
∴(,且x为整数);
(2)解:设每平方米小番茄产量为W千克,
.
∴当时,w有最大值12.5千克.
答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.
【点睛】本题考查二次函数的应用,解题的关键是读懂题意,列出函数关系式.
例2.(2022·浙江衢州·统考中考真题)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线为轴,铅垂线为轴,建立平面直角坐标系.运动员以速度从点滑出,运动轨迹近似抛物线.某运动员7次试跳的轨迹如图2.在着陆坡上设置点(与相距32m)作为标准点,着陆点在点或超过点视为成绩达标.
(1)求线段的函数表达式(写出的取值范围).(2)当时,着陆点为,求的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度的大小有关,进一步探究,测算得7组与 的对应数据,在平面直角坐标系中描点如图3.①猜想关于的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?
(参考数据:,)
【答案】(1)(8≤x≤40)(2)的横坐标为22.5,成绩未达标
(3)①a与成反比例函数关系,,验证见解析;②当m/s时,运动员的成绩恰能达标
【分析】(1)根据图像得出CE的坐标,直接利用待定系数法即可求出解析式;
(2)将代入二次函数解析式,由解出x的值,比较即可得出结果;
(3)由图像可知,a与成反比例函数关系,代入其中一个点即可求出解析式,根据CE的表达式求出K的坐标(32,4),代入即可求出a,再代入反比例函数即可求出v的值.
【详解】(1)解:由图2可知:,
设CE:,将代入,
得:,解得,∴线段CE的函数表达式为(8≤x≤40).
(2)当时,,由题意得,
解得 ∴的横坐标为22.5.∵22.5<32,∴成绩未达标.
(3)①猜想a与成反比例函数关系. ∴设
将(100,0.250)代入得解得,∴.
将(150,0.167)代入验证:,
∴能相当精确地反映a与的关系,即为所求的函数表达式.
②由K在线段上,得K(32,4),代入得,得 由得,
又∵,∴,∴当m/s时,运动员的成绩恰能达标.
【点睛】本题考查二次函数的应用,二次函数与一次函数综合问题,解题的关键在于熟练掌握二次函数的性质,并能灵活运用二次函数与一次函数的性质解决问题.
【变式训练】
变式1.(2022·江苏连云港·中考真题)如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是_________.
【答案】4
【分析】将代入中可求出x,结合图形可知,即可求出OH.
【详解】解:当时,,解得:或,
结合图形可知:,故答案为:4
【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.
变式2.(2021·浙江金华市·中考真题)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.
(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,,.问:顶部F是否会碰到水柱?请通过计算说明.
【答案】(1);(2)22米;(3)不会
【分析】(1)求雕塑高,直接令,代入求解可得;
(2)可先求出的距离,再根据对称性求的长;
(3)利用,计算出的函数值,再与的长进行比较可得结论.
【详解】解:(1)由题意得,A点在图象上.
当时,.
(2)由题意得,D点在图象上.令,得.
解得:(不合题意,舍去).
(3)当时,,∴不会碰到水柱.
【点睛】本题考查了二次函数的图像与性质及图像关于轴对称问题,解题的关键是:掌握二次函数的图像与性质.
变式3.(2022·湖北黄冈·中考真题)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.
(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;
(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.
①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?
②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.
【答案】(1);
(2)①甲种花卉种植90m2, 乙种花卉种植270m2时,种植的总费用w最少,最少为5625元;
②或.
【分析】(1)根据函数图像分两种情况,时y为常数,时y为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;
(2)①设甲种花卉种植面积为,则乙种花卉种植面积为,根据乙的面积不低于甲的3倍可求出,利用总费用等于两种花卉费用之和,将m分不同范围进行讨论列出总费用代数式,根据m的范围解出最小值进行比较即可;②将x按图像分3种范围分别计算总费用的取值范围即可.
(1)由图像可知,当甲种花卉种植面积m2时,费用y保持不变,为30(元/m2),
所以此区间的函数关系式为:,
当甲种花卉种植面积m2时,函数图像为直线,
设函数关系式为:,
∵当x=40时,y=30,当x=100时,y=15,代入函数关系式得:
,解得:,∴
∴当时,y与x的函数关系式应为:;
(2)①设甲种花卉种植面积为,则乙种花卉种植面积为,
∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,
∴,解得:,∴m的范围为:
当时,,此时当m最小时,w最小,
即当m=30时,w有最小值(元),
当时,,
此时当m=90时,离对称轴m=50最远,w最小,
即当m=90时,w有最小值(元)
∵5625<5850,∴当m=90时种植的总费用w最少,为5625元,此时乙种花卉种植面积为=270,
故甲种花卉种植90m2, 乙种花卉种植270m2时,种植的总费用w最少,最少为5625元.
②由以上解析可知:
(1)当时,总费用=(元),
(2)当时,总费用=,
令,解得:或,又∵,∴
(3)当时,总费用=(元),
综上,在、和时种植总费用不会超过6000元,
所以甲种花卉种植面积x的取值范围为:或.
【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.
考点8. 二次函数与几何图形(选填题)
【典例精析】
例1.(2021·浙江中考真题)已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定.若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是____.
【答案】2或
【分析】分,和 确定点M的运动范围,结合抛物线的对称轴与,,共有三个不同的交点,确定对称轴的位置即可得出结论.
【详解】解:由题意得:O(0,0),A(3,4)∵为直角三角形,则有:
①当时, ∴点M在与OA垂直的直线上运动 (不含点O);如图,
②当时,,∴点M在与OA垂直的直线上运动 (不含点A);
③当时,,∴点M在与OA为直径的圆上运动,圆心为点P,
∴点P为OA的中点,∴ ∴半径r=
∵抛物线的对称轴与x轴垂直
由题意得,抛物线的对称轴与,,共有三个不同的交点,
∴抛物线的对称轴为的两条切线,而点P到切线,的距离 ,
又∴直线的解析式为:;直线的解析式为:;
∴或4∴或-8故答案为:2或-8
【点睛】本题是二次函数的综合题型,其中涉及到的知识点有圆的切线的判定,直角三角形的判定,综合性较强,有一定难度.运用数形结合、分类讨论是解题的关键.
例2.(2022·浙江·九年级阶段练习)如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60°的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_______________.
【答案】
【分析】连接OD,做BP⊥x轴,垂足为M,作AP⊥y轴,垂足为N,AP、BP相交于点P.根据旋转作图和“心”形的对称性得到∠COB=30°,∠BOG=60°,设OM=m,得到点B坐标为,把点B代入,求出m,即可得到点A、B坐标,根据勾股定理即可求出AB.
【详解】解:如图,连接OD,做BP⊥x轴,垂足为M,作AP⊥y轴,垂足为N,AP、BP相交于点P.
∵点C绕原点O旋转60°得到点D,∴∠COD=60°,
由“心”形轴对称性得AB为对称轴,∴OB平分∠COD,∴∠COB=30°,∴∠BOG=60°,
设OM=m,在Rt△OBM中,BM=,∴点B坐标为,
∵点B在抛物线上,∴,解得,
∴点B坐标为,点A坐标为,∴AP=,BP=9,
在Rt△ABP中,.故答案为:
【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点B坐标是解题关键.
【变式训练】
变式1.(2022·贵州铜仁·中考真题)如图,若抛物线与x轴交于A、B两点,与y轴交于点C,若.则的值为( )
A. B. C. D.
【答案】A
【分析】观察图象,先设 ,,,根据已知条件及证明,得出,利用根与系数的关系知,最后得出答案.
【详解】设 ,,,
∵二次函数的图象过点,∴,
∵,,∴,
∴,∴,即,
令,根据根与系数的关系知,
∴,故 故选:A.
【点睛】本题考查了二次函数与关于方程之间的相互转换,同时要将线段的长转化为点的坐标之间的关系,灵活运用数形结合的思想是解题关键.
变式2.(2021·广东中考真题)设O为坐标原点,点A、B为抛物线上的两个动点,且.连接点A、B,过O作于点C,则点C到y轴距离的最大值( )
A. B. C. D.1
【答案】A
【分析】设A(a,a ),B(b,b ),求出AB的解析式为,进而得到OD=1,由∠OCB=90°可知,C点在以OD的中点E为圆心,以为半径的圆上运动,当CH为圆E半径时最大,由此即可求解.
【详解】解:如下图所示:过C点作y轴垂线,垂足为H,AB与x轴的交点为D,
设A(a,a ),B(b,b ),其中a≠0,b≠0,∵OA⊥OB,∴,∴,
即,,
设AB的解析式为:,代入A(a,a ),解得:,∴,
∵,即 ,∴C点在以OD的中点E为圆心,以为半径的圆上运动,当CH为圆E的半径时,此时CH的长度最大,故CH的最大值为,故选:A.
【点睛】本题考查了二次函数的性质,圆的相关知识等,本题的关键是求出AB与y轴交点的纵坐标始终为1,结合,由此确定点E的轨迹为圆进而求解.
变式3.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,点在抛物线上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为_________.
【答案】
【分析】点代入抛物线中求出解析式为,再设CD=2x,进而求得E点坐标为(x,4-2x),代入中即可求解.
【详解】解:将点代入抛物线中,解得,∴抛物线解析式为,
设CD、EF分别与轴交于点M和点N,
当四边形CDFE为正方形时,设CD=2x,则CM=x=NE,NO=MO-MN=4-2x,
此时E点坐标为(x,4-2x),代入抛物线中,得到:,
解得,(负值舍去),∴,故答案为:.
【点睛】本题考查二次函数图像上点的坐标及正方形边长相等等知识点,属于基础题,熟练掌握二次函数的图像及性质是解决本题的关键.
考点9. 存在性问题与动态问题
【解题技巧】此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.
【典例精析】
例1.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.(1)求,,三点的坐标并直接写出直线,的函数表达式;(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.
①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.
【答案】(1)点的坐标为,点的坐标为,点的坐标为,直线的函数表达式为:;直线的函数表达式为:;(2)①存在,点的坐标为或;②.
【分析】(1)分别令和时即可求解,,三点的坐标,然后再进行求解直线,的函数表达式即可;(2)①设点的坐标为,其中,由题意易得,,,当时,以,,,为顶点的四边形是平行四边形,进而可根据菱形的性质分当时,是菱形,当时,是菱形,然后分别求解即可;②由题意可作图,则由题意可得抛物线的对称轴为直线,由(1)可得直线的函数表达式为:;直线的函数表达式为:,点的坐标为,点的坐标为,进而可得,设点,然后可求得直线l的解析式为,则可求得点,所以就有,最后根据面积公式及两点距离公式可进行求解.
【详解】解:(1)当时,,解得,,
∵点在点的左侧,∴点的坐标为,点的坐标为,
当时,,∴点的坐标为,
设直线的函数表达式为,代入点A、C的坐标得:,
解得:,∴直线的函数表达式为:.
同理可得直线的函数表达式为:;
(2)①存在.设点的坐标为,其中,
∵点,点的坐标分别为,,
∴,,,
∵,∴当时,以,,,为顶点的四边形是平行四边形,
当时,是菱形,如图所示:
∴,解得,(舍去),
∴点的坐标为,∴点的坐标为;
当时,是菱形,
如图所示:∴,解,得,(舍去),
∴点的坐标为,∴点的坐标为;
综上所述,存在点,使得以,,,为顶点的四边形为菱形,
且点的坐标为或;
②由题意可得如图所示:由题意可得抛物线的对称轴为直线,由(1)可得直线的函数表达式为:;直线的函数表达式为:,点的坐标为,点的坐标为,
∴点,,∴,
设点,∵,∴设直线l的解析式为,把点M的坐标代入得:,
解得:,∴直线l的解析式为,
∴联立直线l与直线AC的解析式得:,解得:,
∴,∴点,
∵点是直线下方抛物线上的一个动点,且,
∴点M在点N的上方才有可能,∴,
∴,
解得:(不符合题意,舍去),∴,
∴由两点距离公式可得.
【点睛】本题考查二次函数的综合及菱形的性质,熟练掌握二次函数的综合及菱形的性质是解题关键.
例2.(2021·湖南岳阳市·中考真题)如图,抛物线经过,两点,与轴交于点,连接.(1)求该抛物线的函数表达式;(2)如图2,直线:经过点A,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值;
(3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)存在,或.
【分析】(1)直接将,两点坐标代入抛物线解析式之中求出系数的值即可;
(2)先利用待定系数法求出直线的解析式,再设出点的坐标,接着表示出Q点和M点的坐标后,求出线段PQ和QM的表达式,再求出它们和的两倍,利用配方法即可求出其最小值;
(3)先利用锐角三角函数证明出,进而得到F点的其中一个位置,在BC另一侧,通过构造直角三角形,利用勾股定理建立方程组,即可求出BF与y轴的交点,进而求出BF的解析式,与抛物线的解析式联立,即可确定F点的坐标.
【详解】解:(1)∵抛物线经过,两点,
∴,解得:,∴该抛物线的函数表达式为:;
(2)∵经过点A,∴,∴,∴直线:;
设,则,
∵抛物线对称轴为:,且Q点和M点关于对称轴对称,
∴M点横坐标为,∴;
又∵,
∴,
当时,的值最小,为;∴该矩形周长的最小值为;
(3)存在,或;由(2)可知,,
∵抛物线的函数表达式为:;且,
∴顶点D坐标为,如图4,作DE⊥QM,
因为,,∴;
又∵抛物线与y轴交于点C,与x轴交于点A、B,∴
令,解得:,;∴,,
∴,∴,
∴当F点在点A处时,能使得,此时;
如图5,在BC另一侧,当时,,过C点作CN⊥BH,垂足为点N,
由角平分线的性质可得:CN=CO=2,∴BN=BO=4,
由勾股定理可得:且,
即,且;解得:,;∴
设直线BH的函数解析式为:,∴,∴,
∴直线BH的函数解析式为:,
联立抛物线解析式与直线BH的函数解析式,得:
解得:(与B点重合,故舍去),或,∴,
综上可得,抛物线上存在点,使得,或.
【点睛】本题综合考查了待定系数法求函数解析式、平面直角坐标系中两点之间的距离、求函数的最大或最小值、勾股定理、三角函数等内容,解决本题的关键是能结合图形理解题意,能牢记和熟练运用相关公式进行计算等,本题计算量较大,对学生的综合分析思维能力要求也较高,属于压轴题类型,本题蕴含的思想有分类讨论的思想和数形结合的思想等.
【变式训练】
变式1.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x,都有.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,或或或
【分析】(1)令,解得,可得函数 必过 ,再结合 必过 得出,,即可得到,再根据,可看成二次函数与一次函数仅有一个交点,且整体位于的上方,可得,有两个相等的实数根,再根据,可解得的值,即可求出二次函数解析式.
(2)结合(1)求出点C的坐标,设,①当为对角线时,②当为对角线时,③当为对角线时,根据中点坐标公式分别列出方程组,解方程组即可得到答案.
【详解】解:(1)令,解得,
当时,,∴ 必过 ,
又∵ 必过 ,∴,
∴,即,
即可看成二次函数与一次函数仅有一个交点,且整体位于的上方∴,有两个相等的实数根
∴,∴,∴,∴,,∴.
(2)由(1)可知:,,设,
①当为对角线时,
∴,解得(舍),,∴,即.
②当为对角线时,∴,解得(舍),
∴,即.
③当为对角线时,
∴,解得,
∴或,∴.
综上所述:N点坐标为或或或.
【点睛】本题主要考查了二次函数的综合应用,涉及到二次函数与不等式组,考查了平行四边形的存在性问题,利用中点公式,分类讨论是解题关键.
变式2.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.
(1)求抛物线的解析式;(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;
【答案】(1);(2);(3)存在,点的横坐标分别为:2,,或.
【分析】(1)待定系数法求二次函数解析式,设解析式为将,两点代入求得,c的值即可;(2)胡不归问题,要求的值,将折线化为直线,构造相似三角形将转化为,再利用三角形两边之和大于第三边求得最值;(3)分2种情形讨论:①AB为矩形的一条边,利用等腰直角三角形三角形的性质可以求得N点的坐标;
②AB为矩形的对角线,设R为AB的中点,RN=AB,利用两点距离公式求解方程可得N点的坐标.
【详解】解:(1)∵过,
∴∴,∴抛物线的解析式为:
(2)在上取一点,使得,连接,
∵对称轴.∴, ,
∴,∴ ∴
∴ 当,,三点在同一点直线上时,最小为.
在中,, ∴
即最小值为.
(3)情形①如图,AB为矩形的一条边时,联立得 是等腰,
分别过 两点作的垂线,交于点,
过作轴,轴,
,也是等腰直角三角形 设,则,所以
代入,解得,(不符题意,舍)
同理,设,则 ,所以
代入,解得,(不符题意,舍)
② AB为矩形的对角线,设R为AB的中点,则
,
设 ,则
整理得: 解得:(不符题意,舍),(不符题意,舍),
,
综上所述:点的横坐标分别为:2,,或.
【点睛】本题考查了二次函数的性质,待定系数法求解析式,三角形相似,勾股定理,二次函数与一次函数交点,矩形的性质,等腰直角三角形性质,平面直角坐标系中两点距离计算等知识,能正确做出辅助线,找到相似三角形是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题10 二次函数
【考情预测】
二次函数是非常重要的函数,年年都会考查,总分值为18分左右,预计2023年浙江各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查。
【考点梳理】
1、二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
2、二次函数解析式的三种形式
(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).
(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).
(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.
3、二次函数的图象及性质
解析式 二次函数y=ax2+bx+c(a,b,c是常数,a≠0)
对称轴 x=–
顶点 (–,)
a的符号 a>0 a<0
图象
开口方向 开口向上 开口向下
最值 当x=–时,y最小值= 当x=–时,y最大值=
最点 抛物线有最低点 抛物线有最高点
增减性 当x<–时,y随x的增大而减小;当x>–时,y随x的增大而增大 当x<–时,y随x的增大而增大;当x>–时,y随x的增大而减小
4、抛物线的平移
二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.
5、二次函数与一元二次方程的关系
1)二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).
2)ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.
3)(1)b2–4ac>0 方程有两个不相等的实数根,抛物线与x轴有两个交点;
(2)b2–4ac=0 方程有两个相等的实数根,抛物线与x轴有且只有一个交点;
(3)b2–4ac<0 方程没有实数根,抛物线与x轴没有交点.
6、二次函数的综合
1)函数存在性问题
解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.
2)函数动点问题
(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.
(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.
(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.
【重难点突破】
考点1. 二次函数的有关概念
【解题技巧】
1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.
2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.
3.二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.
【典例精析】
例1(2023·浙江·中考模拟)二次函数的图象的对称轴是( )
A. B. C. D.
例2.(2021·浙江中考真题)如图,已知经过原点的抛物线与轴交于另一点A(2,0).
(1)求的值和抛物线顶点的坐标;(2)求直线的解析式.
【变式训练】
变式1.(2022·黑龙江哈尔滨·中考真题)抛物线的顶点坐标是( )
A. B. C. D.
变式2.(2022·黑龙江牡丹江·中考真题)若二次函数的图象经过点P(-2,4),则该图象必经过点( )
A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)
变式3.(2023·安徽·中考模拟)若是关于x的二次函数,则m=_______.
考点2. 二次函数的图象
【解题技巧】
二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.
【典例精析】
例1.(2022·山东泰安·中考真题)如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A. B. C. D.
例2.(2022·广西·中考真题)已知反比例函数的图象如图所示,则一次函数和二次函数在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
3.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是( )
A.B.C.D.
【变式训练】
变式1.(2022·湖南株洲·中考真题)已知二次函数,其中、,则该函数的图象可能为( )
A. B.C. D.
变式2.(2022·黑龙江绥化·中考真题)已知二次函数的部分函数图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的图象大致是( )
A.B.C.D.
变式3.(2022·贵州·中考真题)如图,等边、等边的边长分别为3和2.开始时点A与点D重合,在上,在上,沿向右平移,当点D到达点B时停止.在此过程中,设、重合部分的面积为y,移动的距离为x,则y与x的函数图象大致为( )
A. B.C. D.
考点3. 二次函数的图象与字母系数的关系
【典例精析】
例1.(2022·四川达州·中考真题)二次函数的部分图象如图所示,与y轴交于,对称轴为直线.以下结论:①;②;③对于任意实数m,都有成立;④若,,在该函数图象上,则;⑤方程(,k为常数)的所有根的和为4.其中正确结论有( )
A.2 B.3 C.4 D.5
例2.(2022·四川广元·中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
【变式训练】
变式1.(2022·四川成都·中考真题)如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )
A. B.当时,的值随值的增大而增大
C.点的坐标为 D.
变式2.(2022·湖北随州·中考真题)如图,已知开口向下的抛物线与x轴交于点对称轴为直线.则下列结论:①;②;③函数的最大值为;④若关于x的方数无实数根,则.正确的有( )
A.1个 B.2个 C.3个 D.4个
变式3.(2021·浙江中考真题)已知抛物线与轴的交点为和,点,是抛物线上不同于的两个点,记的面积为的面积为.有下列结论:①当时,;②当时,;③当时,;④当时,.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
考点4. 二次函数的性质
【解题技巧】
二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.
【典例精析】
例1.(2022·山东泰安·中考真题)抛物线上部分点的横坐标x,纵坐标y的对应值如表:
x -2 -1 0 6
y 0 4 6 1
下列结论不正确的是( )
A.抛物线的开口向下 B.抛物线的对称轴为直线
C.抛物线与x轴的一个交点坐标为 D.函数的最大值为
例2.(2022·四川自贡·中考真题)已知A( 3, 2) ,B(1, 2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥ 2 ;②当x>0时,一定有y随x的增大而增大;
③若点D横坐标的最小值为 5,点C横坐标的最大值为3;
④当四边形ABCD为平行四边形时,a=.其中正确的是( )
A.①③ B.②③ C.①④ D.①③④
【变式训练】
变式1.(2022·浙江宁波·中考真题)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为( )
A. B. C. D.
变式2.(2022·陕西·中考真题)已知二次函数的自变量对应的函数值分别为,,.当,,时,,,三者之间的大小关系是( )
A. B. C. D.
变式3.(2022·湖南岳阳·中考真题)已知二次函数(为常数,),点是该函数图象上一点,当时,,则的取值范围是( )
A.或 B. C.或 D.
考点5. 二次函数的平移
【解题技巧】
1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关.
2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.
3.抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(x–h)2+k的顶点是(h,k).
4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.
【典例精析】
例1.(2022·浙江湖州·中考真题)把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是( )
A.y=-3 B.y=+3 C.y= D.y=
例2.(2021·浙江宁波市·中考真题)如图,二次函数(a为常数)的图象的对称轴为直线.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.
【变式训练】
变式1.(2022·江苏无锡·中考真题)把二次函数y=x2+4x+m的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:_____.
变式2.(2022·贵州黔东南·中考真题)在平面直角坐标系中,将抛物线先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是_______.
变式3.(2022·广西玉林·中考真题)小嘉说:将二次函数的图象平移或翻折后经过点有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度
③向下平移4个单位长度 ④沿x轴翻折,再向上平移4个单位长度
你认为小嘉说的方法中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
例4.(2022·浙江舟山·中考真题)已知抛物线:()经过点.(1)求抛物的函数表达式.(2)将抛物线向上平移m()个单位得到抛物线.若抛物线的顶点关于坐标原点O的对称点在抛物线上,求m的值.(3)把抛物线向右平移n()个单位得到抛物线.已知点,都在抛物线上,若当时,都有,求n的取值范围.
考点6. 二次函数与一元二次方程、不等式的综合
【解题技巧】
抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定.
1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.
2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.
3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).
【典例精析】
例1.(2022·浙江绍兴·中考真题)已知抛物线的对称轴为直线,则关于x的方程的根是( )
A.0,4 B.1,5 C.1,-5 D.-1,5
例2.(2022·山东泰安·中考真题)一元二次方程根的情况是( )
A.有一个正根,一个负根 B.有两个正根,且有一根大于9小于12
C.有两个正根,且都小于12 D.有两个正根,且有一根大于12
【变式训练】
变式1.(2022·山东潍坊·中考真题)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为( )
A. B. C. D.4
变式2.(2022·黑龙江大庆·中考真题)已知函数的图象与坐标轴恰有两个公共点,则实数m的值为____________.
变式3.(2022·湖北武汉·中考真题)已知抛物线(,,是常数)开口向下,过,两点,且.下列四个结论:①;②若,则;
③若点,在抛物线上,,且,则;
④当时,关于的一元二次方程必有两个不相等的实数根.
其中正确的是_________(填写序号).
考点7. 二次函数的实际应用
【解题技巧】在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.考察背景主要有:经济问题;物体运动轨迹问题;拱桥问题等
【典例精析】
例1.(2022·浙江宁波·中考真题)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?
例2.(2022·浙江衢州·统考中考真题)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线为轴,铅垂线为轴,建立平面直角坐标系.运动员以速度从点滑出,运动轨迹近似抛物线.某运动员7次试跳的轨迹如图2.在着陆坡上设置点(与相距32m)作为标准点,着陆点在点或超过点视为成绩达标.
(1)求线段的函数表达式(写出的取值范围).(2)当时,着陆点为,求的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度的大小有关,进一步探究,测算得7组与 的对应数据,在平面直角坐标系中描点如图3.①猜想关于的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?
(参考数据:,)
【变式训练】
变式1.(2022·江苏连云港·中考真题)如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是_________.
变式2.(2021·浙江金华市·中考真题)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,,.问:顶部F是否会碰到水柱?请通过计算说明.
变式3.(2022·湖北黄冈·中考真题)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.
(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;
(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.
①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?
②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.
考点8. 二次函数与几何图形(选填题)
【典例精析】
例1.(2021·浙江中考真题)已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定.若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是____.
例2.(2022·浙江·九年级阶段练习)如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60°的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_______________.
【变式训练】
变式1.(2022·贵州铜仁·中考真题)如图,若抛物线与x轴交于A、B两点,与y轴交于点C,若.则的值为( )
A. B. C. D.
变式2.(2021·广东中考真题)设O为坐标原点,点A、B为抛物线上的两个动点,且.连接点A、B,过O作于点C,则点C到y轴距离的最大值( )
A. B. C. D.1
变式3.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,点在抛物线上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为_________.
考点9. 存在性问题与动态问题
【解题技巧】此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.
【典例精析】
例1.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.(1)求,,三点的坐标并直接写出直线,的函数表达式;(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.
例2.(2021·湖南岳阳市·中考真题)如图,抛物线经过,两点,与轴交于点,连接.(1)求该抛物线的函数表达式;(2)如图2,直线:经过点A,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.
【变式训练】
变式1.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x,都有.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
变式2.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.
(1)求抛物线的解析式;(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题10 二次函数
【考场演练1】热点必刷
1.(2022·四川雅安·中考真题)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
A.②③④ B.①②④ C.①③ D.①②③④
【答案】B
【分析】由二次函数的开口向上,函数有最小值,可判断①,由二次函数的增减性可判断②,由二次函数图象的平移可判断③,由二次函数与x轴的交点坐标可判断④,从而可得答案.
【详解】解: y=(x﹣2)2﹣9,图象的开口向上,
∴当x=2时,y取得最小值﹣9;故①符合题意;
y=(x﹣2)2﹣9的对称轴为,而 故②符合题意;
将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,故③不符合题意;当时,则 解得: 而
故④符合题意;故选B
【点睛】本题考查的是二次函数的图象与性质,二次函数与x轴的交点问题,掌握“二次函数的图象与性质”是解本题的关键.
2.(2022·四川自贡·中考真题)已知A( 3, 2) ,B(1, 2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥ 2 ;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为 5,点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=.其中正确的是( )
A.①③ B.②③ C.①④ D.①③④
【答案】D
【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,可判断①;根据二次函数的增减性判断②;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断④.
【详解】解:∵点A,B的坐标分别为(-3,-2)和(1,-2),
∴线段AB与y轴的交点坐标为(0,-2),
又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c) ,
∴C≥-2,(顶点在y轴上时取“=”),故①正确;
∵抛物线的顶点在线段AB上运动,开口向上,
∴当x>1时,一定有y随x的增大而增大,故②错误;
若点D的横坐标最小值为-5,则此时对称轴为直线x=-3,
根据二次函数的对称性,点C的横坐标最大值为1+2=3,故③正确;
令y=0,则ax2+bx+c=0,设该方程的两根为x1,x2,则x1+x2=-,x1x2=,
∴CD2=( x1-x2) 2=( x1+x2) 2-4x1x2,
根据顶点坐标公式,,∴,即,
∵四边形ACDB为平行四边形,∴CD=AB=1-(-3)=4,∴=42=16,解得a=,故④正确;
综上所述,正确的结论有①③④.故选:D.
.
【点睛】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y轴上的情况.
3.(2022·贵州黔东南·中考真题)若二次函数的图像如图所示,则一次函数与反比例函数在同一坐标系内的大致图像为( )
A.B.C. D.
【答案】C
【分析】根据二次函数的图像确定a,b,c的正负,即可确定一次函数所经过的象限和反比例函数所在的象限.
【详解】解:∵二次函数的图像开口向上,对称轴在y轴左边,与y轴的交点在y轴负半轴,∴a>0,,c<0,∴b>0,-c>0,
∴一次函数的图像经过第一、二、三象限,反比例函数的图像在第一,三象限,选项C符合题意.故选:C
【点睛】本题考查二次函数图像与系数的关系,一次函数图像与系数的关系,反比例函数图像与系数的关系,熟练并灵活运用这些知识是解题关键.
4.(2022·山东·中考真题)如图,二次函数y=ax2+bx(a≠0)的图像过点(2,0),下列结论错误的是( )
A.b>0 B.a+b>0 C.x=2是关于x的方程ax2+bx=0(a≠0)的一个根
D.点(x1,y1),(x2,y2)在二次函数的图像上,当x1>x2>2时,y2<y1<0
【答案】D
【分析】根据二次函数的图像和性质作出判断即可.
【详解】解:根据图像知,当时,,
故B选项结论正确,不符合题意,,,故A选项结论正确,不符合题意;
由题可知二次函数对称轴为,
,,故B选项结论正确,不符合题意;
根据图像可知是关于的方程的一个根,故选项结论正确,不符合题意,
若点,在二次函数的图像上,
当时,,故D选项结论不正确,符合题意,故选:D.
【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.
5.(2022·湖南郴州·中考真题)关于二次函数,下列说法正确的是( )
A.函数图象的开口向下 B.函数图象的顶点坐标是
C.该函数有最大值,是大值是5 D.当时,y随x的增大而增大
【答案】D
【分析】由抛物线的表达式和函数的性质逐一求解即可.
【详解】解:对于y=(x-1)2+5,∵a=1>0,故抛物线开口向上,故A错误;
顶点坐标为(1,5),故B错误;该函数有最小值,是小值是5,故C错误;
当时,y随x的增大而增大,故D正确,故选:D.
【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.
6.(2022·四川自贡·中考真题)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是( )
A.方案1 B.方案2 C.方案3 D.方案1或方案2
【答案】C
【分析】分别计算出三个方案的菜园面积进行比较即可.
【详解】解:方案1,设米,则米,
则菜园的面积
当时,此时散架的最大面积为8平方米;
方案2,当∠时,菜园最大面积平方米;
方案3,半圆的半径此时菜园最大面积平方米>8平方米,故选:C
【点睛】本题主要考查了同周长的几何图形的面积的问题,根据周长为8米计算三个方案的边长及半径是解本题的关键.
7.(2022·浙江杭州·中考真题)已知二次函数(a,b为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x轴的交点位于y轴的两侧;命题④:该函数的图像的对称轴为直线.如果这四个命题中只有一个命题是假命题,则这个假命题是( )
A.命题① B.命题② C.命题③ D.命题④
【答案】A
【分析】根据对称轴为直线,确定a的值,根据图像经过点(3,0),判断方程的另一个根为x=-1,位于y轴的两侧,从而作出判断即可.
【详解】假设抛物线的对称轴为直线,则,解得a= -2,
∵函数的图像经过点(3,0),∴3a+b+9=0,解得b=-3,
故抛物线的解析式为,令y=0,得,解得,
故抛物线与x轴的交点为(-1,0)和(3,0),函数的图像与x轴的交点位于y轴的两侧;
故命题②,③,④都是正确,命题①错误,故选A.
【点睛】本题考查了待定系数法确定解析式,抛物线与x轴的交点,对称轴,熟练掌握待定系数法,抛物线与x轴的交点问题是解题的关键.
8.(2022·山东青岛·中考真题)已知二次函数的图象开口向下,对称轴为直线,且经过点,则下列结论正确的是( )
A. B. C. D.
【答案】D
【分析】图象开口向下,得a<0, 对称轴为直线,得b=2a,则b<0,图象经过,根据对称性可知,图象经过点,故c>0,当x=1时,a+b+c=0,将b=2a代入,可知3a+c=0.
【详解】解:∵图象开口向下,∴a<0,
∵对称轴为直线,∴b=2a,∴b<0,故A不符合题意;
根据对称性可知,图象经过,∴图象经过点,∴c>0,故B不符合题意;
当x=1时,a+b+c=0,故C不符合题意;将将b=2a代入,可知3a+c=0,故D符合题意.故选:D.
【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.
9.(2022·湖北武汉·中考真题)二次函数的图象如图所示,则一次函数的图象经过( )
A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限
【答案】D
【分析】根据抛物线的顶点在第四象限,得出m<0,n<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.
【详解】解:∵抛物线的顶点(-m,n)在第四象限,∴-m>0,n<0,∴m<0,
∴一次函数y=mx+n的图象经过二、三、四象限,故选:D.
【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.
10.(2022·四川宜宾·中考真题)已知抛物线的图象与x轴交于点、,若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是( )
A. B. C. D.
【答案】A
【分析】根据题意,设抛物线的解析式为,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.
【详解】解:抛物线的图象与x轴交于点、,
设抛物线的解析式为顶点坐标为,
,以AB为直径的圆与在x轴下方的抛物线有交点,则圆的半径为3,如图,
解得故选:A
【点睛】本题考查圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.
11.(2022·江苏泰州·中考真题)已知点在下列某一函数图像上,且那么这个函数是( )
A. B. C. D.
【答案】D
【分析】先假设选取各函数,代入自变量求出y1、y2、y3的值,比较大小即可得出答案.
【详解】解:A.把点代入y=3x,解得y1=-9,y2=-3,y3=3,所以y1B.把点代入y=3x2,解得y1=27,y2=3,y3=3,所以y1>y2=y3,这与已知条件不符,故选项错误,不符合题意;
C. 把点代入y=,解得y1=-1,y2=-3,y3=3,所以y2D. 把点代入y=-,解得y1=1,y2=3,y3=-3,所以,这与已知条件相符,故选项正确,符合题意;故选:D.
【点睛】此题考查了一次函数、反比例函数以及二次函数,解题的关键是掌握函数值的大小变化和
函数的性质.
12.(2022·广西·中考真题)已知二次函数y=2x2 4x 1在0≤x≤a时,y取得的最大值为15,则a的值为( )
A.1 B.2 C.3 D.4
【答案】D
【分析】先找到二次函数的对称轴和顶点坐标,求出y=15时,x的值,再根据二次函数的性质得出答案.
【详解】解:∵二次函数y=2x2-4x-1=2(x-1)2-3,∴抛物线的对称轴为x=1,顶点(1,-3),
∵1>0,开口向上,∴在对称轴x=1的右侧,y随x的增大而增大,
∵当0≤x≤a时,即在对称轴右侧,y取得最大值为15,
∴当x=a时,y=15,∴2(a-1)2-3=15,解得:a=4或a=-2(舍去),故a的值为4.故选:D.
【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.
13.(2022·内蒙古包头·中考真题)已知实数a,b满足,则代数式的最小值等于( )
A.5 B.4 C.3 D.2
【答案】A
【分析】由已知得b=a+1,代入代数式即得a2-4a+9变形为(a-2)2+5,再根据二次函数性质求解.
【详解】解:∵b-a=1,∴b=a+1,
∴a2+2b-6a+7=a2+2(a+1)-6a+7=a2-4a+9=(a-2)2+5,
∵(a-2)2≥0,∴当a=2时,代数式a2+2b-6a+7有最小值,最小值为5,故选:A.
【点睛】本题考查二次函数的最值,通过变形将代数式化成(a-2)2+5是解题的关键.
14.(2021·浙江杭州市·中考真题)在“探索函数的系数,,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,,,,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为( )
A. B. C. D.
【答案】A
【分析】分四种情况讨论,利用待定系数法,求过,,,中的三个点的二次函数解析式,继而解题.
【详解】解:设过三个点,,的抛物线解析式为:
分别代入,,得解得;
设过三个点,,的抛物线解析式为:
分别代入,,得解得;
设过三个点,,的抛物线解析式为:
分别代入,,得解得;
设过三个点,,的抛物线解析式为:
分别代入,,得解得;
最大为,故选:A.
【点睛】本题考查待定系数法求二次函数的解析式,是基础考点,难度较易,掌握相关知识是解题关键.
15.(2022·湖北荆州·中考真题)规定:两个函数,的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数与的图象关于y轴对称,则这两个函数互为“Y函数”.若函数(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为______.
【答案】或
【分析】分两种情况,根据关于y轴对称的图形的对称点的坐标特点,即可求得.
【详解】解:函数(k为常数)的“Y函数”图象与x轴只有一个交点,
函数(k为常数)的图象与x轴也只有一个交点,
当k=0时,函数解析为,它的“Y函数”解析式为,它们的图象与x轴只有一个交点,当时,此函数是二次函数,
它们的图象与x轴都只有一个交点,它们的顶点分别在x轴上,
,得,故k+1=0,解得k=-1,
故原函数的解析式为,故它的“Y函数”解析式为,
故答案为:或.
【点睛】本题考查了新定义,二次函数图象与x轴的交点问题,坐标与图形变换-轴对称,求一次函数及二次函数的解析式,理解题意和采用分类讨论的思想是解决本题的关键.
16.(2022·四川广安·中考真题)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.
【答案】##
【分析】根据已知得出直角坐标系,通过代入A点坐标(3,0),求出二次函数解析式,再根据把x=4代入抛物线解析式得出下降高度,即可得出答案.
【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,把点A点坐标(3,0)代入得,
∴,∴,∴抛物线解析式为:;
当水面下降,水面宽为8米时,有把代入解析式,得;
∴水面下降米;故答案为:;
【点睛】此题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.
17.(2022·内蒙古呼和浩特·中考真题)在平面直角坐标系中,点和点的坐标分别为和,抛物线与线段只有一个公共点,则的取值范围是______.
【答案】或
【分析】根据抛物线求出对称轴,轴的交点坐标为,顶点坐标为,直线CD的表达式,分两种情况讨论:当时,当时,利用抛物线的性质可知,当越大,则抛物线的开口越小,即可求解.
【详解】解:抛物线的对称轴为:,当时,,故抛物线与轴的交点坐标为,顶点坐标为,直线CD的表达式,
当时,且抛物线过点时,,解得(舍去),
当,抛物线与线段只有一个公共点时,
即顶点在直线CD上,则,解得,
当时,且抛物线过点时,,解得,
由抛物线的性质可知,当越大,则抛物线的开口越小,且抛物线与线段只有一个公共点,
∴,且,解得,
综上所述,的取值范围为或,故答案为或.
【点睛】本题考查了二次函数的性质,理解对称轴的含义,熟练掌握二次函数的性质,巧妙运用分类讨论思想解决问题是解题的关键.
18.(2022·内蒙古赤峰·中考真题)如图,抛物线交轴于、两点,交轴于点,点是抛物线上的点,则点关于直线的对称点的坐标为_________.
【答案】(0,1)
【分析】先求出A、B、C、D的坐标,根据CD∥x轴即可求出点关于直线的对称点坐标.
【详解】∵抛物线交轴于、两点,交轴于点,
∴当时,;
当时,∴∴OA=OC=5∴
∵是抛物线上的点∴,解得
当时,与A重合;当时,;∴CD∥x轴,∴
设点关于直线的对称点M,则
∴M在y轴上,且△DCM是等腰直角三角形∴DC=CM=6∴M点坐标为(0,1)故答案为:(0,1).
【点睛】本题考查二次函数的性质,等腰直角三角形的判定与性质,解题的关键是根据对称得到△DCM是等腰直角三角形.
19.(2022·甘肃武威·中考真题)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度(单位:m)与飞行时间(单位:s)之间具有函数关系:,则当小球飞行高度达到最高时,飞行时间_________s.
【答案】2
【分析】把一般式化为顶点式,即可得到答案.
【详解】解:∵h=-5t2+20t=-5(t-2)2+20,且-5<0,∴当t=2时,h取最大值20,故答案为:2.
【点睛】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.
20.(2022·四川遂宁·中考真题)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a-b+c,则m的取值范围是______.
【答案】
【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=-1代入解析式求解.
【详解】解:∵抛物线开口向上,∴a>0,
∵抛物线对称轴在y轴左侧,∴-<0,∴b>0,
∵抛物线经过(0,-2),∴c=-2,∵抛物线经过(1,0),∴a+b+c=0,
∴a+b=2,b=2-a,∴y=ax2+(2-a)x-2,当x=-1时,y=a+a-2-2=2a-4,
∵b=2-a>0,∴0<a<2,∴-4<2a-4<0,故答案为:-4<m<0.
【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.
21.(2022·黑龙江牡丹江·中考真题)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.
【答案】或(答出这两种形式中任意一种均得分)
【分析】直接根据“上加下减,左加右减”的原则进行解答.
【详解】由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.
故答案为y=2(x+1)2﹣2.
考点:二次函数图象与几何变换.
22.(2021·湖北武汉市·中考真题)如图(1),在中,,,边上的点从顶点出发,向顶点运动,同时,边上的点从顶点出发,向顶点运动,,两点运动速度的大小相等,设,,关于的函数图象如图(2),图象过点,则图象最低点的横坐标是__________.
【答案】
【分析】先根据图形可知AE+CD=AB+AC=2,进而求得AB=AC=1、BC=以及图象最低点的函数值即为AE+CD的最小值;再运用勾股定理求得CD、AE,然后根据AE+CD得到+可知其表示点(x,0)到(0,-1)与(,)的距离之和,然后得当三点共线时有函数值.最后求出该直线的解析式,进而求得x的值.
【详解】解:由图可知,当x=0时,AE+CD=AB+AC=2
∴AB=AC=1,BC=,图象最低点函数值即为AE+CD的最小值
由题意可得:CD=,AE=
∴AE+CD=+,即点(x,0)到(0,-1)与(,)的距离之和
∴当这三点共线时,AE+CD最小 设该直线的解析式为y=kx+b
解得∴ 当y=0时,x=.故填.
【点睛】本题考查了二次函数与方程的意义,从几何图形和函数图象中挖掘隐含条件成为解答本题的关键.
23.(2021·浙江嘉兴市·中考真题)已知二次函数.
(1)求二次函数图象的顶点坐标;(2)当时,函数的最大值和最小值分别为多少?
(3)当时,函数的最大值为,最小值为,m-n=3求的值.
【答案】(1);(2)函数的最大值为4,最小值为0;(3)或.
【分析】(1)把二次函数配成顶点式即可得出结论;
(2)利用二次函数的图象和性质确定函数的最大值和最小值.
(3)分t<0;;三种情况,根据二次函数的性质和m-n=3列出关于t的方程,解之即可.
【详解】(1)∵,∴顶点坐标为.
(2)∵顶点坐标为,∴当时,,
∵当时,随着的增大而增大,∴当时,.
∵当时,随着的增大而减小,∴当时,.
∴当时,函数的最大值为4,最小值为0.
(3)当时,对进行分类讨论.
①当时,即,,随着的增大而增大.
当时,.∴.
∴,解得(不合题意,舍去).
②当时,顶点的横坐标在取值范围内,∴.
i)当时,在时,,∴.
∴,解得,(不合题意,舍去).
ii)当时在时,,∴.
∴,解得,,(不合题意舍去).
③当时,随着的增大而减小,当时,,
当时,,
∴∴,解得(不合题意,舍去).
综上所述,或.
【点睛】本题是二次函数综合题,考查抛物线的性质以及最值问题,有难度,并学会利用参数解决问题是解题的关键,属于中考常考题型.
24.(2022·浙江杭州·中考真题)设二次函数(b,c是常数)的图像与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数的表达式及其图像的对称轴.
(2)若函数的表达式可以写成(h是常数)的形式,求的最小值.
(3)设一次函数(m是常数).若函数的表达式还可以写成的形式,当函数的图像经过点时,求的值.
【答案】(1),(2)(3)或
【分析】(1)利用待定系数法计算即可.(2)根据等式的性质,构造以b+c为函数的二次函数,求函数最值即可.(3)先构造y的函数,把点代入解析式,转化为的一元二次方程,解方程变形即可.
(1)由题意,二次函数(b,c是常数)经过(1,0),(2,0),
∴,解得,∴抛物线的解析式.
∴ 图像的对称轴是直线.
(2)由题意,得,∵,∴b=-4h,c=
∴,∴当时,的最小值是.
(3)由题意,得
因为函数y的图像经过点,所以,所以,或.
【点睛】本题考查了二次函数的待定系数法,二次函数的最值,对称性,熟练掌握二次函数的最值,对称性是解题的关键.
25.(2022·浙江绍兴·中考真题)已知函数(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.
(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
【答案】(1)b=-6,c=-3(2)x=-3时,y有最大值为6(3)m=-2或
【分析】(1)把(0,-3),(-6,-3)代入y=,即可求解;
(2)先求出抛物线的顶点坐标为(-3,6),再由-4≤x≤0,可得当x=-3时,y有最大值,即可求解;
(3)由(2)得当x>-3时,y随x的增大而减小;当x≤-3时,y随x的增大而增大,然后分两种情况:当-3<m≤0时,当m≤-3时,即可求解.
(1)解:把(0,-3),(-6,-3)代入y=,得∶,解得:;
(2)解:由(1)得:该函数解析式为y==,
∴抛物线的顶点坐标为(-3,6),∵-1<0∴抛物线开口向下,
又∵-4≤x≤0,∴当x=-3时,y有最大值为6.
(3)解:由(2)得:抛物线的对称轴为直线x=-3,
∴当x>-3时,y随x的增大而减小;当x≤-3时,y随x的增大而增大,
①当-3<m≤0时,当x=0时,y有最小值为-3,当x=m时,y有最大值为,
∴+(-3)=2,∴m=-2或m=-4(舍去).
②当m≤-3时,当x=-3时,y有最大值为6,
∵y的最大值与最小值之和为2,∴y最小值为-4,∴=-4,
∴m=或m=(舍去).综上所述,m=-2或.
【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用分类讨论思想解答是解题的关键.
26.(2022·浙江丽水·中考真题)如图,已知点在二次函数的图像上,且.(1)若二次函数的图像经过点.①求这个二次函数的表达式;②若,求顶点到的距离;(2)当时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
【答案】(1)①;②(2)
【分析】(1)①将点代入中即可求出二次函数表达式;
②当时,此时为平行x轴的直线,将代入二次函数解析式中求出,再由求出直线为,最后根据二次函数顶点坐标即可求解;(2)分两种情形:若M,N在对称轴的异侧,;若M、N在对称轴的异侧,,x1<2,分别求解即可.
(1)解:①将点代入中,∴,解得,
∴二次函数的表达式为:;
②当时,此时为平行x轴的直线,将代入二次函数中得到:,
将代入二次函数中得到:,
∵,∴=,整理得到:,
又∵,代入上式得到:,解出,
∴,即直线为:,
又二次函数的顶点坐标为(2,-1),∴顶点(2,-1)到的距离为;
(2)解:若M,N在对称轴的异侧,,∴x1+3>2,∴x1>-1,
∵∴,∴-1<,
∵函数的最大值为y1=a(x1-2)2-1,最小值为-1,∴y-(-1)=1,
∴a=,∴,∴;
若M、N在对称轴的异侧,,x1<2,∵,∴,
∵函数的最大值为y=a(x2-2)2-1,最小值为-1,
∴y-(-1)=1,∴a=,∴,∴,
综上所述,a的取值范围为.
【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图像与性质及二次函数的最值等问题:当开口向上(向下)时,自变量的取值离对称轴越远,其对应的函数值就越大(越小) .
27.(2022·浙江温州·中考真题)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案?
素材1
图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽,拱顶离水面.据调查,该河段水位在此基础上再涨达到最高.
素材2
为迎佳节,拟在图1桥洞前面的桥拱上悬挂长的灯笼,如图3.为了安全,灯笼底部距离水面不小于;为了实效,相邻两盏灯笼悬挂点的水平间距均为;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
问题解决
任务1确定桥拱形状:在图2中建立合适的直角坐标系,求抛物线的函数表达式.
任务2探究悬挂范围:在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
任务3拟定设计方案:给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
【答案】任务一:见解析,;任务二:悬挂点的纵坐标的最小值是;;任务三:两种方案,见解析
【分析】任务一:根据题意,以拱顶为原点,建立如图1所示的直角坐标系,待定系数法求解析式即可求解;任务二:根据题意,求得悬挂点的纵坐标,进而代入函数解析式即可求得横坐标的范围;任务三:有两种设计方案,分情况讨论,方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼;方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为,根据题意求得任意一种方案即可求解.
【详解】任务一:以拱顶为原点,建立如图1所示的直角坐标系,
则顶点为,且经过点.设该抛物线函数表达式为,
则,∴,∴该抛物线的函数表达式是.
任务二:∵水位再上涨达到最高,灯笼底部距离水面至少,灯笼长,
∴悬挂点的纵坐标,∴悬挂点的纵坐标的最小值是.
当时,,解得或,∴悬挂点的横坐标的取值范围是.
任务三:有两种设计方案
方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼.
∵,相邻两灯笼悬挂点的水平间距均为,
∴若顶点一侧挂4盏灯笼,则,若顶点一侧挂3盏灯笼,则,
∴顶点一侧最多可挂3盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂7盏灯笼.
∴最左边一盏灯笼悬挂点的横坐标是.
方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为,
∵若顶点一侧挂5盏灯笼,则,
若顶点一侧挂4盏灯笼,则,∴顶点一侧最多可挂4盏灯笼.
∵挂满灯笼后成轴对称分布,∴共可挂8盏灯笼.∴最左边一盏灯笼悬挂点的横坐标是.
【点睛】本题考查了二次函数的应用,根据题意建立坐标系,掌握二次函数的性质是解题的关键.
28.(2022·浙江嘉兴·中考真题)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
【答案】(1)(2)的值为4(3)
【分析】(1)把代入即可解得抛物线的函数表达式为;
(2)将抛物线向上平移个单位得到抛物线,顶点为,关于原点的对称点为,代入可解得的值为4;
(3)把抛物线向右平移个单位得抛物线为,根据点B(1,y1),C(3,y2)都在抛物线上,当y1>y2时,可得,即可解得的取值范围是.
(1)解:把代入得:,解得,
;答:抛物线的函数表达式为;
(2)解:抛物线的顶点为,
将抛物线向上平移个单位得到抛物线,则抛物线的顶点为,
而关于原点的对称点为,
把代入得:,解得,答:的值为4;
(3)解:把抛物线向右平移个单位得到抛物线,抛物线解析式为,
点,都在抛物线上,
,,
y1>y2,,整理变形得:,
, 解得,的取值范围是.
【点睛】本题考查二次函数综合应用,涉及待定系数法,对称及平移变换等知识,解题的关键是能得出含字母的式子表达抛物线平移后的解析式.
29.(2022·浙江湖州·中考真题)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上,抛物线经过A,C两点,与x轴交于另一个点D.
(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
【答案】(1)①A(3,0),B(3,3),C(0,3);② (2);
【分析】(1)①据坐标与图形的性质即可求解;②利用待定系数法求解即可;(2)证Rt△ABP∽Rt△PCM,根据相似三角形的性质得到n关于m的二次函数,利用二次函数的性质即可求解.
(1)解:①∵正方形OABC的边长为3,
∴点A,B,C的坐标分别为A(3,0),B(3,3),C(0,3);
②把点A(3,0),C(0,3)的坐标分别代入y= x2+bx+c,
得,解得;
(2)解:由题意,得∠APB=90°-∠MPC=∠PMC,∠B=∠PCM=90°,
∴Rt△ABP∽Rt△PCM,∴,即.
整理,得,即.
∴当时,n的值最大,最大值是.
【点睛】本题综合考查了正方形的性质,相似三角形的判定和性质,二次函数的性质,待定系数法求函数解析式,根据正方形的性质求出点A,B,C的坐标是解题的关键.
【考场演练2】重难点必刷
1.(2022·山东潍坊·中考真题)如图,在 ABCD中,∠A=60°,AB=2,AD=1,点E,F在 ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是( )
A.B.C.D.
【答案】A
【分析】分0≤x≤1,1【详解】解:当0≤x≤1时,过点F作FG⊥AB于点G,
∵∠A=60°,AE=AF=x,∴AG=x,由勾股定理得FG=x,
∴y=AE×FG=x2,图象是一段开口向上的抛物线;
当1∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=,由勾股定理得DH=,
∴y=(DF+AE)×DH=x-,图象是一条线段;
当2≤x≤3时,过点E作EI⊥CD于点I,
∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI=(3-x),
∴y= AB×DH -CF×EI=-(3-x)2=-x2+x-,图象是一段开口向下的抛物线;
观察四个选项,只有选项A符合题意,故选:A.
【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.
2.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,抛物线与轴只有一个公共点A(1,0),与轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线,则图中两个阴影部分的面积和为( )
A.1 B.2 C.3 D.4
【答案】B
【分析】连接AB,OM,根据二次函数图像的对称性把阴影图形的面积转化为平行四边形ABOM面积求解即可.
【详解】设平移后的抛物线与对称轴所在的直线交于点M,连接AB,OM.
由题意可知,AM=OB,∵∴OA=1,OB=AM=2,
∵抛物线是轴对称图形,∴图中两个阴影部分的面积和即为四边形ABOM的面积,∵,,∴四边形ABOM为平行四边形,∴.故选:B.
【点睛】此题考查了二次函数图像的对称性和阴影面积的求法,解题的关键是根据二次函数图像的对称性转化阴影图形的面积.
3.(2022·黑龙江齐齐哈尔·中考真题)如图,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为,函数最大值为4,结合图象给出下列结论:①;②;③;④若关于x的一元二次方程 有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
【答案】B
【分析】根据二次函数图象与性质逐个结论进行分析判断即可.
【详解】解:∵二次函数的对称轴为,∴ ∴故①正确;
∵函数图象开口向下,对称轴为,函数最大值为4,
∴函数的顶点坐标为(-1,4)当x=-1时, ∴∴,
∵二次函数的图象与y轴的交点在(0,1)与(0,2)之间,
∴<<2∴<4+a<2∴,故②正确;
∵抛物线与x轴有两个交点,∴ ∴,故③正确;
∵抛物线的顶点坐标为(-1,4)且方程有两个不相等的实数根,
∴ ∴,故④错误;
由图象可得,当x>-1时,y随x的增大而减小,故⑤错误.
所以,正确的结论是①②③,共3个,故选:B
【点睛】本题主要考查了二次函数图象与性质,,熟练掌握二次函数的图象与性质是解答本题的关键.
4.(2022·湖北恩施·中考真题)已知抛物线,当时,;当时,.下列判断:①;②若,则;③已知点,在抛物线上,当时,;④若方程的两实数根为,,则.
其中正确的有( )个.
A.1 B.2 C.3 D.4
【答案】C
【分析】利用根的判别式可判断①;把,代入,得到不等式,即可判断②;求得抛物线的对称轴为直线x=b,利用二次函数的性质即可判断③;利用根与系数的关系即可判断④.
【详解】解:∵a=>0,开口向上,且当时,;当时,,
∴抛物线与x轴有两个不同的交点,
∴,∴;故①正确;
∵当时,,∴-b+c<0,即b>+c,∵c>1,∴b>,故②正确;
抛物线的对称轴为直线x=b,且开口向上,
当x∵方程的两实数根为x1,x2,∴x1+x2=2b,
∵当c>1时,b>,∴则x1+x2>3,但当c<1时,则b未必大于,则x1+x2>3的结论不成立,
故④不正确;综上,正确的有①②③,共3个,故选:C.
【点睛】本题考查了二次函数的性质,一元二次方程的根的判别式以及根与系数的关系等知识,解题的关键是读懂题意,灵活运用所学知识解决问题.
5.(2022·浙江温州·中考真题)已知点都在抛物线上,点A在点B左侧,下列选项正确的是( )
A.若,则 B.若,则 C.若,则 D.若,则
【答案】D
【分析】画出二次函数的图象,利用数形结合的思想即可求解.
【详解】解:当时,画出图象如图所示,
根据二次函数的对称性和增减性可得,故选项C错误,选项D正确;
当时,画出图象如图所示,
根据二次函数的对称性和增减性可得,故选项A、B都错误;故选:D
【点睛】本题考查二次函数的图象和性质,借助图象,利用数形结合的思想解题的解决问题的关键.
6.(2022·四川南充·中考真题)已知点在抛物线上,当且时,都有,则m的取值范围为( )
A. B. C. D.
【答案】A
【分析】根据题意可得,抛物线的对称轴为,然后分四种情况进行讨论分析,最后进行综合即可得出结果.
【详解】解:根据题意可得,抛物线的对称轴为,
①当0③当时,使恒成立,∴m,∴m,,
④当时,恒不成立;综上可得:,故选:A.
【点睛】题目主要考查二次函数的基本性质,理解题意,熟练掌握二次函数的基本性质是解题的关键.
7.(2021·山东菏泽市·中考真题)定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:①当时,函数图象的对称轴是轴;②当时,函数图象过原点;③当时,函数有最小值;④如果,当时,随的增大而减小,其中所有正确结论的序号是______.
【答案】①②③.
【分析】利用二次函数的性质根据特征数,以及的取值,逐一代入函数关系式,然判断后即可确定正确的答案.
【详解】解:当时,把代入,可得特征数为
∴,,,∴函数解析式为,函数图象的对称轴是轴,故①正确;
当时,把代入,可得特征数为
∴,,,∴函数解析式为,
当时,,函数图象过原点,故②正确;函数
当时,函数图像开口向上,有最小值,故③正确;
当时,函数图像开口向下,对称轴为:
∴时,可能在函数对称轴的左侧,也可能在对称轴的右侧,故不能判断其增减性,故④错误;
综上所述,正确的是①②③,故答案是:①②③.
【点睛】本题考查了二次函数的图像与性质,二次函数的对称轴等知识点,牢记二次函数的基本性质是解题的关键.
8.(2020·黑龙江大庆市·中考真题)已知关于的一元二次方程,有下列结论:
①当时,方程有两个不相等的实根;②当时,方程不可能有两个异号的实根;
③当时,方程的两个实根不可能都小于1;
④当时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.
【答案】①③④
【分析】由根的判别式,根与系数的关系进行判断,即可得到答案.
【详解】解:根据题意,∵一元二次方程,∴;
∴当,即时,方程有两个不相等的实根;故①正确;
当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故②错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故③正确;由,则,解得:或;故④正确;
∴正确的结论有①③④;故答案为:①③④.
【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.
9.(2022·四川成都·中考真题)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.
【答案】
【分析】根据题意,得-45+3m+n=0,,确定m,n的值,从而确定函数的解析式,根据定义计算确定即可.
【详解】根据题意,得-45+3m+n=0,,
∴ ,∴ ,解得m=50,m=10,
当m=50时,n=-105;当m=10时,n=15;
∵抛物线与y轴交于正半轴,∴n>0,∴,
∵对称轴为t==1,a=-5<0,∴时,h随t的增大而增大,
当t=1时,h最大,且(米);当t=0时,h最最小,且(米);
∴w=,∴w的取值范围是,故答案为:.
当时,的取值范围是
∵对称轴为t==1,a=-5<0,
∴时,h随t的增大而减小,
当t=2时,h=15米,且(米);当t=3时,h最最小,且(米);
∴w=,w=,
∴w的取值范围是,
故答案为:.
【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.
10.(2021·四川南充市·中考真题)关于抛物线,给出下列结论:①当时,抛物线与直线没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则.其中正确结论的序号是________.
【答案】②③
【分析】先联立方程组,得到,根据判别式即可得到结论;②先求出a<1,分两种情况:当0<a<1时,当a<0时,进行讨论即可;③求出抛物线的顶点坐标为:,进而即可求解.
【详解】解:联立,得,
∴ =,当时, 有可能≥0,
∴抛物线与直线有可能有交点,故①错误;
抛物线的对称轴为:直线x=,
若抛物线与x轴有两个交点,则 =,解得:a<1,
∵当0<a<1时,则>1,此时,x<,y随x的增大而减小,
又∵x=0时,y=1>0,x=1时,y=a-1<0,
∴抛物线有一个交点在点(0,0)与(1,0)之间,
∵当a<0时,则<0,此时,x>,y随x的增大而减小,
又∵x=0时,y=1>0,x=1时,y=a-1<0,
∴抛物线有一个交点在点(0,0)与(1,0)之间,
综上所述:若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间,故②正确;
抛物线的顶点坐标为:,
∵,∴抛物线的顶点所在直线解析式为:x+y=1,即:y=-x+1,
∵抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),
∴,解得:,故③正确.故答案是:②③.
【点睛】本题主要考查二次函数的图像和性质,掌握二次函数与二次方程的联系,熟练应用判别式判断一元二次方程根的情况,是解题的关键.
11.(2022·北京·中考真题)在平面直角坐标系中,点在抛物线上,设抛物线的对称轴为(1)当时,求抛物线与y轴交点的坐标及的值;
(2)点在抛物线上,若求的取值范围及的取值范围.
【答案】(1)(0,2);2 (2)的取值范围为,的取值范围为
【分析】(1)当x=0时,y=2,可得抛物线与y轴交点的坐标;再根据题意可得点关于对称轴为对称,可得t的值,即可求解;
(2)抛物线与y轴交点关于对称轴的对称点坐标为(2t,c),根据抛物线的图象和性质可得当时,y随x的增大而减小,当时,y随x的增大而增大,然后分两种情况讨论:当点,点,(2t,c)均在对称轴的右侧时;当点在对称轴的左侧,点,(2t,c)均在对称轴的右侧时,即可求解.
(1)解:当时,,∴当x=0时,y=2,∴抛物线与y轴交点的坐标为(0,2);
∵,∴点关于对称轴为对称,∴;
(2)解:当x=0时,y=c,
∴抛物线与y轴交点坐标为(0,c),
∴抛物线与y轴交点关于对称轴的对称点坐标为(2t,c),
∵,∴当时,y随x的增大而减小,当时,y随x的增大而增大,
当点,点,(2t,c)均在对称轴的右侧时, ,
∵1<3,∴2t>3,即(不合题意,舍去),
当点在对称轴的左侧,点,(2t,c)均在对称轴的右侧时,点在对称轴的右侧,,
此时点到对称轴的距离大于点到对称轴的距离,∴,解得:,
∵1<3,∴2t>3,即,∴,
∵,,对称轴为,∴, ∴,解得:,
∴的取值范围为,的取值范围为.
【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
12.(2022·贵州遵义·中考真题)新定义:我们把抛物线(其中)与抛物线称为“关联抛物线”.例如:抛物线的“关联抛物线”为:.已知抛物线的“关联抛物线”为.(1)写出的解析式(用含的式子表示)及顶点坐标;
(2)若,过轴上一点,作轴的垂线分别交抛物线,于点,.
①当时,求点的坐标;②当时,的最大值与最小值的差为,求的值.
【答案】(1),顶点为(2)①或;②或.
【分析】(1)根据定义将一次项系数与二次项系数互换即可求得解析式,化为顶点式即可求得顶点坐标;
(2)①设,则,,根据题意建立方程解方程即可求解;②根据题意,分三种情形讨论,根据点距离对称轴的远近确定最值,然后建立方程,解方程求解即可.
(1)解:抛物线的“关联抛物线”为,
根据题意可得,的解析式
顶点为
(2)解:①设,则,
∴
当时,解得,当时,方程无解或
②的解析式
顶点为,对称轴为
, 当时,即时,
函数的最大值为,最小值为
的最大值与最小值的差为
解得(,舍去)
当时,且即时,
函数的最大值为,最小值为
的最大值与最小值的差为
解得(,舍去)
当时,即时,抛物线开向上,对称轴右侧随的增大而增大,
函数的最大值为,最小值为
的最大值与最小值的差为即
即解得(舍去)
综上所述,或.
【点睛】本题考查了二次函数的性质,求顶点式,二次函数的最值问题,分类讨论是解题的关键.
13.(2022·湖北十堰·中考真题)已知抛物线与轴交于点和点两点,与轴交于点.(1)求抛物线的解析式;(2)点是抛物线上一动点(不与点,,重合),作轴,垂足为,连接.①如图1,若点在第三象限,且,求点的坐标;②直线交直线于点,当点关于直线的对称点落在轴上时,求四边形的周长.
【答案】(1) (2)①;②或
【分析】(1)把点,代入,即可求解;
(2)①过点C作CQ⊥DP于点Q,可得△CPQ为等腰直角三角形,从而得到PQ=CQ,设点,则OD=-m,,再由四边形OCQD为矩形,可得QC=OD=PQ=-m,DQ=OC=3,从而得到,即可求解;②过点E作EM∥x轴于点M,先求出直线BC的解析式为,证得四边形为菱形,可得,然后根据△CEM∽△CBO,设点,则点,然后分三种情况讨论,即可求解.
(1)解:把点,代入得:
,解得:,∴抛物线解析式为;
(2)解:①如图,过点C作CQ⊥DP于点Q,
∵点C(0,-3),∴OC=3,
∵,∴△CPQ为等腰直角三角形,∴CQ=PQ,
设点,则OD=-m,,
∵轴,∴∠COD=∠ODQ=∠CQD=90°,∴四边形OCQD为矩形,
∴QC=OD=PQ=-m,DQ=OC=3,∴,
∴,解得:或0(舍去),∴点;
②如图,过点E作EM∥x轴于点M,
令y=0,,解得:(舍去),
∴点B(-4,0),∴OB=4,∴,
设直线BC的解析式为,把点B(-4,0),C(0,-3)代入得:
,解得:,∴直线BC的解析式为,
∵点关于直线的对称点落在轴上时,∴,,,
∵DP⊥x轴,∴PD∥CE′,∴,∴,
∴CE=PE,∴,∴四边形为菱形,
∵EM∥x轴,∴△CEM∽△CBO,∴,
设点, 则点,
当点P在y轴左侧时,EM=-t,
当-4<t<0时,,
∴,∴,
解得:或0(舍去),∴,
∴四边形的周长为;
当点P在y轴右侧时,EM=-t,
当t≤-4时,,
∴,解得:或0(舍去),此时,
∴四边形的周长为;
当点P在y轴右侧,即t>0时,EM=t,,
∴,解得:或0,不符合题意,舍去;
综上所述,四边形的周长为或.
【点睛】本题主要考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、对称的性质和菱形的判定方法;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用相似比计算线段的长和解一元二次方程是解题的关键.
14.(2022·四川雅安·中考真题)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).
(1)求此二次函数的表达式及图象顶点D的坐标;
(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.
【答案】(1) (2)E的坐标为:或或或
(3)BP的最小值为:
【分析】(1)据题意可设抛物线为再代入C的坐标可得函数解析式,化为顶点式可得顶点坐标;(2)如图,由可得抛物线的对称轴为:设 而A(﹣1,0),C(0,-3),再利用勾股定理分别表示 再分三种情况讨论即可;(3)如图,连结AD,记AD的中点为H,由 则在以H为圆心,HA为半径的圆H上,不与A,D重合,连结BH,交圆H于P,则PB最短,再求解H的坐标,结合勾股定理可得答案.
(1)解: 二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),
∴设二次函数为:
把C(0,﹣3)代入抛物线可得: 解得:
∴抛物线为:
(2)如图,由可得抛物线的对称轴为:
设 而A(﹣1,0),C(0,-3),
当时,,解得 即
当时, 解得: 即
当时, 整理得:
解得:
综上:E的坐标为:或或或
(3)如图,连结AD,记AD的中点为H,由
则在以H为圆心,HA为半径的圆H上,不与A,D重合,
连结BH,交圆H于P,则PB最短,
即BP的最小值为:
【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数的性质,勾股定理的应用,二次函数与圆的综合,判断PB最小时,P的位置是解本题的关键.
15.(2022·湖南娄底·中考真题)如图,抛物线与轴相交于点、点,与轴相交于点.
(1)请直接写出点,,的坐标;(2)点在抛物线上,当取何值时,的面积最大?并求出面积的最大值.(3)点是抛物线上的动点,作//交轴于点,是否存在点,使得以、、、为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点的坐标;若不存在,请说明理由.
【答案】(1),,;(2),面积的最大值;
(3)存在,或或.
【分析】(1)令得到,求出x即可求得点A和点B的坐标,令,则即可求点C的坐标;
(2)过P作轴交BC于Q,先求出直线BC的解析式,根据三角形的面积,当平行于直线BC直线与抛物线只有一个交点时,点P到BC的距离最大,此时,的面积最大,利用三角形面积公式求解;(3)根据点是抛物线上的动点,作//交轴于点得到,设,当点F在x轴下方时,当点F在x轴的上方时,结合点,利用平行四边形的性质来列出方程求解.
(1)解:令,则,解得,,∴,,
令,则,∴;
(2)解:过P作轴交BC于Q,如下图.
设直线BC为,将、代入得
,解得,∴直线BC为,
根据三角形的面积,当平行于直线BC直线与抛物线只有一个交点时,点P到BC的距离最大,此时,的面积最大,
∵, ∴ ,,
∴,
∵,∴时,PQ最大为,
而,∴的面积最大为;
(3)解:存在.∵点是抛物线上的动点,作//交轴于点,如下图.
∴,设.
当点F在x轴下方时,∵,即,∴,
解得(舍去),,∴.
当点F在x轴的上方时,令,则 ,
解得,, ∴或.
综上所述,满足条件的点F的坐标为或或.
【点睛】本题是二次函数与平行四边形、二次函数与面积等问题的综合题,主要考查求点的坐标,平行四边形的性质,面积的表示,涉及方程思想,分类思想等.
16.(2021·湖北宜昌市·中考真题)在平面直角坐标系中,抛物线与轴交于点和点,顶点坐标记为.抛物线的顶点坐标记为.(1)写出点坐标;(2)求,的值(用含的代数式表示);(3)当时,探究与的大小关系;(4)经过点和点的直线与抛物线,的公共点恰好为3个不同点时,求的值.
【答案】(1);(2),;(3)当时,,当时,,当时,,当或时,;(4),,,
【分析】(1)令,解出x即可,(2)把函数顶点式,即可得出结论,
(3)令,结合函数图像分类讨论即可,(4)由题意可得:直线的解析式为:,再根据已知条件画出函数图像分三类情况讨论,进而得出n的值;
【详解】(1)∵,令,,
∴,,∴.
(2),∴,
∵,∴.
(3)∵,,
当时,,此时或,.
由如图1图象可知:当时,,当时,,
当时,,当或时,.
(4)设直线的解析式为:,则,
由(1)-(2)得,,∴,
直线的解析式为:.
第一种情况:如图3,当直线经过抛物线,的交点时,
联立抛物线与的解析式可得:
①
联立直线与抛物线的解析式可得:
,则,②
当时,把代入得:,把,代入直线的解析式得:
,∴,∴.
此时直线与抛物线,的公共点恰好为三个不同点.
当时,把代入①得:,
该方程判别式,所以该方程没有实数根.
第二种情况:如图4,
当直线与抛物线或者与抛物线只有一个公共点时.
当直线与抛物线只有一个公共点时,
联立直线与抛物线可得,
∴,此时,即,
∴,∴.
由第一种情况而知直线与抛物线公共点的横坐标为,,当时,,∴.
所以此时直线与抛物线,的公共点恰好为三个不同点.
如图5,当直线与抛物线只有一个公共点,
∵,,∴,
联立直线与抛物线,,
,当时,,
此时直线与抛物线,的公共点只有一个,∴.
综上所述:∴,,,.
【点睛】本题考查的是二次函数综合运用,涉及到二次函数的顶点式、一次函数与二次函数的综合、数形结合思想等等,其中(4),要正确画图,并注意分类求解,避免遗漏.
17.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径,且点A,B关于y轴对称,杯脚高,杯高,杯底MN在x轴上.
(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围).
(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体所在抛物线形状不变,杯口直径,杯脚高CO不变,杯深与杯高之比为0.6,求的长.
【答案】(1);(2)
【分析】(1)确定B点坐标后,设出抛物线解析式,利用待定系数法求解即可;(2)利用杯深 CD′ 与杯高 OD′ 之比为0.6,求出OD′ ,接着利用抛物线解析式求出B'或A'横坐标即可完成求解.
【详解】解:(1)设,∵杯口直径 AB=4 ,杯高 DO=8 ,∴
将,代入,得,.
(2),,,,
当时,,或,,
即杯口直径的长为.
【点睛】本题考查了抛物线的应用,涉及到待定系数法求抛物线解析式、求抛物线上的点的坐标等内容,解决本题的关键是读懂题意,找出相等关系列出等式等.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题10 二次函数
【考场演练1】热点必刷
1.(2022·四川雅安·中考真题)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为( )
①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
A.②③④ B.①②④ C.①③ D.①②③④
2.(2022·四川自贡·中考真题)已知A( 3, 2) ,B(1, 2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:
①c≥ 2 ;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为 5,点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=.其中正确的是( )
A.①③ B.②③ C.①④ D.①③④
3.(2022·贵州黔东南·中考真题)若二次函数的图像如图所示,则一次函数与反比例函数在同一坐标系内的大致图像为( )
A.B.C. D.
4.(2022·山东·中考真题)如图,二次函数y=ax2+bx(a≠0)的图像过点(2,0),下列结论错误的是( )
A.b>0 B.a+b>0 C.x=2是关于x的方程ax2+bx=0(a≠0)的一个根
D.点(x1,y1),(x2,y2)在二次函数的图像上,当x1>x2>2时,y2<y1<0
5.(2022·湖南郴州·中考真题)关于二次函数,下列说法正确的是( )
A.函数图象的开口向下 B.函数图象的顶点坐标是
C.该函数有最大值,是大值是5 D.当时,y随x的增大而增大
6.(2022·四川自贡·中考真题)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是( )
A.方案1 B.方案2 C.方案3 D.方案1或方案2
7.(2022·浙江杭州·中考真题)已知二次函数(a,b为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x轴的交点位于y轴的两侧;命题④:该函数的图像的对称轴为直线.如果这四个命题中只有一个命题是假命题,则这个假命题是( )
A.命题① B.命题② C.命题③ D.命题④
8.(2022·山东青岛·中考真题)已知二次函数的图象开口向下,对称轴为直线,且经过点,则下列结论正确的是( )
A. B. C. D.
9.(2022·湖北武汉·中考真题)二次函数的图象如图所示,则一次函数的图象经过( )
A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限
10.(2022·四川宜宾·中考真题)已知抛物线的图象与x轴交于点、,若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是( )
A. B. C. D.
11.(2022·江苏泰州·中考真题)已知点在下列某一函数图像上,且那么这个函数是( )
A. B. C. D.
12.(2022·广西·中考真题)已知二次函数y=2x2 4x 1在0≤x≤a时,y取得的最大值为15,则a的值为( )
A.1 B.2 C.3 D.4
13.(2022·内蒙古包头·中考真题)已知实数a,b满足,则代数式的最小值等于( )
A.5 B.4 C.3 D.2
14.(2021·浙江杭州市·中考真题)在“探索函数的系数,,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,,,,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为( )
A. B. C. D.
15.(2022·湖北荆州·中考真题)规定:两个函数,的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数与的图象关于y轴对称,则这两个函数互为“Y函数”.若函数(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为______.
16.(2022·四川广安·中考真题)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.
17.(2022·内蒙古呼和浩特·中考真题)在平面直角坐标系中,点和点的坐标分别为和,抛物线与线段只有一个公共点,则的取值范围是______.
18.(2022·内蒙古赤峰·中考真题)如图,抛物线交轴于、两点,交轴于点,点是抛物线上的点,则点关于直线的对称点的坐标为_________.
19.(2022·甘肃武威·中考真题)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度(单位:m)与飞行时间(单位:s)之间具有函数关系:,则当小球飞行高度达到最高时,飞行时间_________s.
20.(2022·四川遂宁·中考真题)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a-b+c,则m的取值范围是______.
21.(2022·黑龙江牡丹江·中考真题)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.
22.(2021·湖北武汉市·中考真题)如图(1),在中,,,边上的点从顶点出发,向顶点运动,同时,边上的点从顶点出发,向顶点运动,,两点运动速度的大小相等,设,,关于的函数图象如图(2),图象过点,则图象最低点的横坐标是__________.
23.(2021·浙江嘉兴市·中考真题)已知二次函数.
(1)求二次函数图象的顶点坐标;(2)当时,函数的最大值和最小值分别为多少?
(3)当时,函数的最大值为,最小值为,m-n=3求的值.
24.(2022·浙江杭州·中考真题)设二次函数(b,c是常数)的图像与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数的表达式及其图像的对称轴.
(2)若函数的表达式可以写成(h是常数)的形式,求的最小值.
(3)设一次函数(m是常数).若函数的表达式还可以写成的形式,当函数的图像经过点时,求的值.
25.(2022·浙江绍兴·中考真题)已知函数(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.
(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
26.(2022·浙江丽水·中考真题)如图,已知点在二次函数的图像上,且.(1)若二次函数的图像经过点.①求这个二次函数的表达式;②若,求顶点到的距离;(2)当时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
27.(2022·浙江温州·中考真题)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案?
素材1:图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽,拱顶离水面.据调查,该河段水位在此基础上再涨达到最高.
素材2:为迎佳节,拟在图1桥洞前面的桥拱上悬挂长的灯笼,如图3.为了安全,灯笼底部距离水面不小于;为了实效,相邻两盏灯笼悬挂点的水平间距均为;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
问题解决:任务1确定桥拱形状:在图2中建立合适的直角坐标系,求抛物线的函数表达式.
任务2探究悬挂范围:在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
任务3拟定设计方案:给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
28.(2022·浙江嘉兴·中考真题)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
29.(2022·浙江湖州·中考真题)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上,抛物线经过A,C两点,与x轴交于另一个点D.
(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
【考场演练2】重难点必刷
1.(2022·山东潍坊·中考真题)如图,在 ABCD中,∠A=60°,AB=2,AD=1,点E,F在 ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是( )
A.B.C.D.
2.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,抛物线与轴只有一个公共点A(1,0),与轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线,则图中两个阴影部分的面积和为( )
A.1 B.2 C.3 D.4
3.(2022·黑龙江齐齐哈尔·中考真题)如图,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为,函数最大值为4,结合图象给出下列结论:①;②;③;④若关于x的一元二次方程 有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
4.(2022·湖北恩施·中考真题)已知抛物线,当时,;当时,.下列判断:①;②若,则;③已知点,在抛物线上,当时,;④若方程的两实数根为,,则.
其中正确的有( )个.
A.1 B.2 C.3 D.4
5.(2022·浙江温州·中考真题)已知点都在抛物线上,点A在点B左侧,下列选项正确的是( )
A.若,则 B.若,则 C.若,则 D.若,则
6.(2022·四川南充·中考真题)已知点在抛物线上,当且时,都有,则m的取值范围为( )
A. B. C. D.
7.(2021·山东菏泽市·中考真题)定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:①当时,函数图象的对称轴是轴;②当时,函数图象过原点;③当时,函数有最小值;④如果,当时,随的增大而减小,其中所有正确结论的序号是______.
8.(2020·黑龙江大庆市·中考真题)已知关于的一元二次方程,有下列结论:
①当时,方程有两个不相等的实根;②当时,方程不可能有两个异号的实根;
③当时,方程的两个实根不可能都小于1;
④当时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.
9.(2022·四川成都·中考真题)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.
10.(2021·四川南充市·中考真题)关于抛物线,给出下列结论:①当时,抛物线与直线没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则.其中正确结论的序号是________.
11.(2022·北京·中考真题)在平面直角坐标系中,点在抛物线上,设抛物线的对称轴为(1)当时,求抛物线与y轴交点的坐标及的值;
(2)点在抛物线上,若求的取值范围及的取值范围.
12.(2022·贵州遵义·中考真题)新定义:我们把抛物线(其中)与抛物线称为“关联抛物线”.例如:抛物线的“关联抛物线”为:.已知抛物线的“关联抛物线”为.(1)写出的解析式(用含的式子表示)及顶点坐标;(2)若,过轴上一点,作轴的垂线分别交抛物线,于点,.
①当时,求点的坐标;②当时,的最大值与最小值的差为,求的值.
13.(2022·湖北十堰·中考真题)已知抛物线与轴交于点和点两点,与轴交于点.(1)求抛物线的解析式;(2)点是抛物线上一动点(不与点,,重合),作轴,垂足为,连接.①如图1,若点在第三象限,且,求点的坐标;②直线交直线于点,当点关于直线的对称点落在轴上时,求四边形的周长.
14.(2022·四川雅安·中考真题)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).
(1)求此二次函数的表达式及图象顶点D的坐标;
(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.
15.(2022·湖南娄底·中考真题)如图,抛物线与轴相交于点、点,与轴相交于点.(1)请直接写出点,,的坐标;(2)点在抛物线上,当取何值时,的面积最大?并求出面积的最大值.(3)点是抛物线上的动点,作//交轴于点,是否存在点,使得以、、、为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点的坐标;若不存在,请说明理由.
16.(2021·湖北宜昌市·中考真题)在平面直角坐标系中,抛物线与轴交于点和点,顶点坐标记为.抛物线的顶点坐标记为.(1)写出点坐标;(2)求,的值(用含的代数式表示);(3)当时,探究与的大小关系;(4)经过点和点的直线与抛物线,的公共点恰好为3个不同点时,求的值.
17.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径,且点A,B关于y轴对称,杯脚高,杯高,杯底MN在x轴上.
(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围).
(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体所在抛物线形状不变,杯口直径,杯脚高CO不变,杯深与杯高之比为0.6,求的长.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)