5.1二元一次方程和它的解课后强化
班级:________ 姓名:________
一、单选题
1、下列方程中是二元一次方程的是( )
A. B.
C. D.
2、整式的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值.则关于x的方程的解为( )
x -2 -1 0 1 2
-12 -8 -4 0 4
A. B. C. D.
3、把一根9m长的钢管截成1m长和2m长两种规格均匀的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有( ).
A.2种 B.3种 C.4种 D.5种
4、下列4组数值,哪个是二元一次方程2x+3y=5的解?( )
A. B. C. D.
5、“五一”长假前某学校举行了一年一度的文化艺术节,为表彰校“古诗词吟诵社团”的同学,特购买了单价为5元的笔记本和单价为4元的签字笔对他们进行奖励,正好花费64元(两种都要买),则购买的方案共有( )
A.2种 B.3种 C.4种 D.5种
6、小明带15元去学习用品商店购买A,B,C三种学习用品,其中A,B,C三种学习用品的单价分别为5元、3元、1元,要求每种学习用品至少买一件且A种学习用品最多买两件,若15元刚好用完,则小明的购买方案共有( )
A.3种 B.4种 C.5种 D.6种
7、关于,的二元一次方程的解,下列说法正确的是( ).
A.无解 B.有无数组解 C.只有一组解 D.无法确定
8、小明只带2元和5元两种面值的人民币,他买一件学习用品要支付25元,则付款的方式有( )
A.2种 B.3种 C.4种 D.5种
二、填空题
1、下列方程①x+y; ②; ③3x+1=8y+;④xy=5 ;⑤x+=5中,是二元一次方程的是_________(只填序号).
2、若方程是关于x,y的二元一次方程,则a的值为_____.
3、凤翔中学准备了270元活动经费用于购买即将到来的校园歌手大赛奖品,现有两种笔袋可选,甲每个24元,乙每个30元,现经费正好全部用完,那么有 _____种购买方案.
4、已知,则________.
5、已知关于x,y的方程组有无数多组解,则代数式﹣3(n﹣mn)+2(mn﹣m)的值为 ___.
6、已知是关于x、y二元一次方程x+ky=7的一组解,则k的值为______.
三、解答题
1、将方程3x-2y=25变形为用含y的式子表示x,并分别求出当y=-4,y=7,y=时相应的x的值.
2、某制造厂决定购买A,B两种型号的污水处理设备若干台,其中每台设备的价格、月处理污水量如下表:
A型 B型
价格(万元/台) 8 6
月处理污水量(吨/月) 200 180
(1)若要求购买资金共20万元,则该厂有哪些购买方案?
(2)若要求购买两种设备共8台,且月处理污水量不低于1540吨,则该厂有哪些购方案?
3、若关于、的二元一次方程组的解满足,求的取值范围.
4、学习材料:对任意一个三位数,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“异位数”,将一个“异位数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以.
问题解决:
(1)计算: ; ;
(2)若为“异位数”,则的最大值与最小值的差为 ;
(3)若为“异位数”,且满足,若,则 ;
(4)若,都是“异位数”,其中,,(,,都是整数),规定:,当时,的值为 .
5、对于一个各位数字都不为零的三位正整数,若满足个位上数字是十位上数字的2倍,则称为“倍半数”.将一个“倍半数”任意一个数位上的数字去掉后可以得到三个新两位数,把这三个两位数之和记为.如“倍半数”,去掉百位上的数字后得到24,去掉十位上的数字后得到74,去掉个位上的数字后得到72,则.
(1)求:,;
(2)若能被13整除,求出满足条件的所有“倍半数”.
6、一个四位偶自然数的千位数字是1,当它分别被四个不同的数去除时,余数也都是1,试求出满足这些条件的所有自然数,其中最大的一个是多少?