登录二一教育在线组卷平台 助您教考全无忧
2023年人教版小学数学四年级下册第九单元数学广角 鸡兔同笼 同步练习
一、单选题
1.(2022四下·平阳期末)丁老师把59本作业本分给13个小朋友,有的分到3本,有的分到7本,当这些作业本正好分完时,分到3本的有( )人。
A.5 B.8 C.13 D.15
2.某宾馆有3人房和2人房共50间,总共可以住旅客112人,则该宾馆有( )。
A.3人房12间,2人房38间 B.3人房20间,2人房26间
C.3人房16间,2人房34间 D.3人房8间,2人房42间
3.(2019四下·东莞期末)全班一共有100人去乘船,大船每条坐8人,小船每条坐了6人。租了大、小船共15条,每条船都坐满了。其中大船租了( )条。
A.5 B.6 C.8 D.10
4.(2020四下·昂昂溪期末)在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣1分。小明同学虽然答了全部的题目,但最后只得了14分,请问他答错了( )题。
A.1 B.2 C.3 D.4
5.一位工人搬运1000只玻璃杯,每只杯子的运费是3分,破损一只要赔5分,最后这位工人得到运费26元。搬运中他打碎了( )只杯子。
A.30 B.50 C.60 D.80
二、填空题
6.(2020四下·西山期末)笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有22只脚。那么笼中鸡有 只,兔有 只。
7.老师带了56个学生去划船,共乘坐10条船,其中大船坐6人,小船坐4人,大船有 条,小船有 条。
8.琳琳去买铅笔,她用10元钱买了价钱为5角和1元的两种铅笔共13支。5角的铅笔有 只,1元的铅笔有 支。
9.某班捐款总额为240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有 张。
10.(2019四下·通榆期末)六年级同学分组参加课外兴趣小组,每人只能参加一个小组,科技类每5人一组,艺术类每3人一组,共有37名学生报名,正好分成9组,参见科技类的学生有 个组,参加艺术类的有 个
组。
三、解答题
11.(2022四下·大渡口期末)学校环保小分队12人参加植树活动。男生每人栽了3棵,女生每人栽了2棵,一共栽了32棵。请问男、女生各几人?
12.(2021四下·镇原期末)羽毛球馆的售票窗口在一小时内售出A、B两种比赛门票共26张,共收费1600元。如果每张A票是80元,每张B票是50元,那么售出的A票和B票各有多少张?
13.(2019四下·营山期末)两位老师带34名学生去划船,一共租了7只船,正好坐满,其中大船限乘6人,小船限乘4人,大船和小船各租了几只?
14.同学们正在进行乒乓球比赛,有10张乒乓球桌正在进行双打、单打比赛,一共有34名同学正在比赛。单打的球桌有几张?
15.(2020四下·清丰期末)2020年新型冠状病毒肆虐全球,武汉被封城期间,为了保障蔬菜的供应,准备用8辆大、小卡车往城里运38吨蔬菜,大卡车每辆每次运6吨,小卡车每辆每次运4吨。大、小卡车各用几辆恰好能一次运完?(每辆车都装满)
16.一次数学竞赛共有20道题,做对一道题得5分,做错一道题倒扣3分。刘冬得了52分,你知道刘冬做对了几道题吗?
17.(2021四下·下城期末)当前我国新冠疫苗分别有一针型、两针型和三针型三种。阳光学校的老师们完成接种两针型和三针型的有78人,共接种了202针,接种两针型和三针型的老师各有几人?
18.一辆汽车装运玻璃仪器360个,每个运费5元。若损坏一个仪器不但不给运费,还要赔50元,最后只收到运费1250元。损坏了几个仪器
答案解析部分
1.【答案】B
【知识点】鸡兔同笼问题
【解析】【解答】解:假设13个小朋友都分到了7本
13×7=91(本)
91-59=32(本)
7-3=4(本)
32÷4=8(人)
故答案为:B。
【分析】五步解鸡兔同笼问题:(1)假设都是其中一个量;(2)计算假设和实际的差;(3)计算另一个差(有加有减);(4)两个差的商就是假设外的另一个值;(5)总数-假设外的另一个值=假设的值。
2.【答案】A
【知识点】鸡兔同笼问题
【解析】【解答】解:假设全部是3人房,2人房:(3×50-112)÷(3-2)=38间,3人房:50-38=12间,所以该宾馆有3人房12间,2人房38间。
故答案为:A。
【分析】假设全部是3人房,2人房的间数=(3×一共有房间的间数-一共可以住旅客的人数)÷(3-2),3人房的间数=一共有房间的间数-2人房的间数。
3.【答案】A
【知识点】鸡兔同笼问题
【解析】【解答】解:假设都是小船,共坐:15×6=90(人),
则大船有:
(100-90)÷(8-6)
=10÷2
=5(条)
故答案为:A。
【分析】假设都是小船,则共坐90人,比100人少,是因为把大船也当作小船来算了,用一共少算的人数除以每条大船和小船坐的人数差即可求出大船的条数。
4.【答案】B
【知识点】鸡兔同笼问题
【解析】【解答】解:假设都答对了,则答错的是:
(10×2-14)÷(2+1)
=6÷3
=2(题)
故答案为:B。
【分析】假设都答对了,则得分是20分,一定比14分多,是因为把答错的也按照得2分来计算了,每道错题多算了(2+1)分,因此用一共多算的分数除以每道题多算的分数即可求出答错的题数。
5.【答案】B
【知识点】鸡兔同笼问题
【解析】【解答】解:26元=2600分
(1000×3-2600)÷(3+5)
=400÷8
=50(只)
故答案为:B
【分析】先把26元换算成2600分。假设都没有破损,则会得到1000×3的运费,一定比2600多,是因为把打碎的也当多3分来计算了,这样用一共多算的钱数除以每只杯子多算的(5+3)分即可求出打碎的杯子数。
6.【答案】5;3
【知识点】鸡兔同笼问题
【解析】【解答】解:假设都是兔,则鸡有:
(8×4-22)÷(4-2)
=10÷2
=5(只)
兔有:8-5=3(只)。
故答案为:5;3。
【分析】鸡兔共有8只,脚共有22只。假设都是兔,则共有8×4=32只脚,比22只多,是因为把鸡也当作兔来计算脚数了,一共多算了(8×4-22)只脚。每只鸡多算了(4-2)只脚,所以用一共多算的脚数除以每只鸡多算的脚数即可求出鸡的只数,进而求出兔的只数。
7.【答案】8;2
【知识点】鸡兔同笼问题
【解析】【解答】解:大船:(56-10×4)÷(6-4)=8(条); 小船:10-8=2(条)。
故答案为:8,2。
【分析 】 先假设10条船全是小船,所乘坐的人数比56人少,少的数是把每条大船少算了(6-4)人,看看这个数里有多少个(6-4),也就知道有多少条大船,共乘船数减去大船就是小船。
8.【答案】6;7
【知识点】鸡兔同笼问题
【解析】【解答】解:5角=0.5元,5角的铅笔:
(13×1-10)÷(1-0.5)
=3÷0.5
=6(支)
1元的硬币:13-6=7(支)
故答案为:6;7。
【分析】假设都是1元的,那么总钱数是13×1,一定比10元多,是因为把5角的也当作1元来计算了。用一共多算的钱数除以每支铅笔多算的钱数即可求出5角的支数,进而求出1元的支数。
9.【答案】10
【知识点】鸡兔同笼问题
【解析】【解答】解:5元和2元各多少张:(50×10-240)÷(8+3)=20(张); 50-20×2=10(张)。
故答案为:10。
【分析】我们先假设50张全是10元的,所得的钱数比总额多,多出的钱数是把5元和2元全算成10元了,这样他们两个合起来每两张就多加了(8+5)元,看一下多余的钱中有几个(8+5),求出的数是2元和5元各一份的数,10元的张数就用50减去所得数的2倍。
10.【答案】5;4
【知识点】鸡兔同笼问题
【解析】【解答】(5×9-37)÷(5-3)
=8÷2
=4(个)
9-4=5(个)
故答案为:5;4。
【分析】这是鸡兔同笼问题,利用假设法,根据艺术类的组数=(科技组每组人数×分成的组数-实际的人数)÷(科技组每组的人数-艺术组每组的人数),即可求出艺术类的组数,然后根据科技类的组数=总组数-艺术类的组数,即可解答。
11.【答案】解:假设全部是男生,则女生的人数:
(12×3-32)÷(3-2)
=(36-32)÷1
=4÷1
=4(人)
男生人数:12-4=8(人)
答:男生8人,女生4人。
【知识点】鸡兔同笼问题
【解析】【分析】假设全部是男生,女生的人数=(男生平均每人栽树的棵数×男生人数-一共栽树的棵数)÷(男生平均每人栽树的棵数-女生平均每人栽树的棵数);男生人数=总人数-女生人数。
12.【答案】解:B票:(80×26-1600)÷(80-50)
=480÷30
=16(张)
A票:26-16=10(张)
答:售出的A票有10张,售出的B票有16张。
【知识点】鸡兔同笼问题
【解析】【分析】假设售出的全部是A票,则B票的张数=(A票的单价×数量-实际收费金额)÷(A票单价-B票单机);A票张数=A、B两种比赛门票总张数-B票张数。
13.【答案】解:假设7只船都是大船,7×6=42(人)
42-(34+2)=6(人)
小船:6÷(6-4)=3(只)
大船:7-3=4(只)
答:大船4只,小船3只。
【知识点】鸡兔同笼问题
【解析】【分析】此题主要考查了鸡兔同笼的应用,可以应用假设法解答, 假设7只船都是大船,用每只大船乘坐的人数×大船的只数=一共可以乘坐的人数,然后用一共可以乘坐的人数-现在的总人数=多出的人数,然后用多出的人数÷每只大船比小船多坐的人数=小船的只数,最后用船的总只数-小船的只数=大船的只数,据此列式解答。
14.【答案】解:假设全部是双打的球桌,则单打的球桌有:
(10×4-34)÷(4-2)
=(40-34)÷2
=6÷2
=3(张)。
答:单打的球桌有3张。
【知识点】鸡兔同笼问题
【解析】【分析】单打的球桌张数=(假设全部是双打的球桌的人数-实际比赛的人数)÷(每桌双打的人数-每桌单打的人数)。
15.【答案】解:小卡车:(8×6-38)÷(6-4)
=10÷2
=5(辆)
大卡车:8-5=3(辆)
答:大卡车用3辆、小卡车用5辆恰好能一次运完。
【知识点】鸡兔同笼问题
【解析】【分析】这是一道鸡兔同笼问题,可以用假设法解答;如果假设全用大卡车,可以有下面的式子:
小卡车的数量=(6×卡车总数量-运送的蔬菜总吨数)÷(大客车-次运的吨数-小卡车一次运的吨数),大卡车的数量=卡车总数量-小卡车的数辆。
16.【答案】解:(20×3+52)÷(5+3)
=112÷8
=14(道)
答:刘冬做对了14道题。
【知识点】鸡兔同笼问题
【解析】【分析】假设都做错了,则会扣分20×3,不仅不得分还会扣分。用一共扣的分数加上本来得的分数就是分数差,用分数差除以做对和做错一道题的分数差(5+3)即可求出做对的题数。
17.【答案】解:假设全部接种的三针型,则接种两针型的人数有:
(78×3-202)÷(3-2)
=(234-202)÷1
=32÷1
=32(人)
78-32=46(人)
答:接种的三针型的有46人,接种两针型的有32人。
【知识点】鸡兔同笼问题
【解析】【分析】假设全部接种的三针型,则接种两针型的人数=(接种的总人数×三针型的针数-共接种的总针数)÷(三针型的针数-两针型的针数),接种三针型的人数=接种的总人数-接种两针型的人数。
18.【答案】解:(360×5-1250)÷(5+50)=10(个)
答:损坏了10个仪器。
【知识点】鸡兔同笼问题
【解析】【分析】假设没有损坏,则共有运费360×5元,一定大于1250元,是因为把损坏一个赔的50元也当作5元来计算运费了;这样用一共多算的钱数除以损坏一个多算的钱数即可求出损坏仪器的个数。
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1登录二一教育在线组卷平台 助您教考全无忧
2023年人教版小学数学四年级下册第九单元数学广角 鸡兔同笼 同步练习
一、单选题
1.(2022四下·平阳期末)丁老师把59本作业本分给13个小朋友,有的分到3本,有的分到7本,当这些作业本正好分完时,分到3本的有( )人。
A.5 B.8 C.13 D.15
【答案】B
【知识点】鸡兔同笼问题
【解析】【解答】解:假设13个小朋友都分到了7本
13×7=91(本)
91-59=32(本)
7-3=4(本)
32÷4=8(人)
故答案为:B。
【分析】五步解鸡兔同笼问题:(1)假设都是其中一个量;(2)计算假设和实际的差;(3)计算另一个差(有加有减);(4)两个差的商就是假设外的另一个值;(5)总数-假设外的另一个值=假设的值。
2.某宾馆有3人房和2人房共50间,总共可以住旅客112人,则该宾馆有( )。
A.3人房12间,2人房38间 B.3人房20间,2人房26间
C.3人房16间,2人房34间 D.3人房8间,2人房42间
【答案】A
【知识点】鸡兔同笼问题
【解析】【解答】解:假设全部是3人房,2人房:(3×50-112)÷(3-2)=38间,3人房:50-38=12间,所以该宾馆有3人房12间,2人房38间。
故答案为:A。
【分析】假设全部是3人房,2人房的间数=(3×一共有房间的间数-一共可以住旅客的人数)÷(3-2),3人房的间数=一共有房间的间数-2人房的间数。
3.(2019四下·东莞期末)全班一共有100人去乘船,大船每条坐8人,小船每条坐了6人。租了大、小船共15条,每条船都坐满了。其中大船租了( )条。
A.5 B.6 C.8 D.10
【答案】A
【知识点】鸡兔同笼问题
【解析】【解答】解:假设都是小船,共坐:15×6=90(人),
则大船有:
(100-90)÷(8-6)
=10÷2
=5(条)
故答案为:A。
【分析】假设都是小船,则共坐90人,比100人少,是因为把大船也当作小船来算了,用一共少算的人数除以每条大船和小船坐的人数差即可求出大船的条数。
4.(2020四下·昂昂溪期末)在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣1分。小明同学虽然答了全部的题目,但最后只得了14分,请问他答错了( )题。
A.1 B.2 C.3 D.4
【答案】B
【知识点】鸡兔同笼问题
【解析】【解答】解:假设都答对了,则答错的是:
(10×2-14)÷(2+1)
=6÷3
=2(题)
故答案为:B。
【分析】假设都答对了,则得分是20分,一定比14分多,是因为把答错的也按照得2分来计算了,每道错题多算了(2+1)分,因此用一共多算的分数除以每道题多算的分数即可求出答错的题数。
5.一位工人搬运1000只玻璃杯,每只杯子的运费是3分,破损一只要赔5分,最后这位工人得到运费26元。搬运中他打碎了( )只杯子。
A.30 B.50 C.60 D.80
【答案】B
【知识点】鸡兔同笼问题
【解析】【解答】解:26元=2600分
(1000×3-2600)÷(3+5)
=400÷8
=50(只)
故答案为:B
【分析】先把26元换算成2600分。假设都没有破损,则会得到1000×3的运费,一定比2600多,是因为把打碎的也当多3分来计算了,这样用一共多算的钱数除以每只杯子多算的(5+3)分即可求出打碎的杯子数。
二、填空题
6.(2020四下·西山期末)笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有22只脚。那么笼中鸡有 只,兔有 只。
【答案】5;3
【知识点】鸡兔同笼问题
【解析】【解答】解:假设都是兔,则鸡有:
(8×4-22)÷(4-2)
=10÷2
=5(只)
兔有:8-5=3(只)。
故答案为:5;3。
【分析】鸡兔共有8只,脚共有22只。假设都是兔,则共有8×4=32只脚,比22只多,是因为把鸡也当作兔来计算脚数了,一共多算了(8×4-22)只脚。每只鸡多算了(4-2)只脚,所以用一共多算的脚数除以每只鸡多算的脚数即可求出鸡的只数,进而求出兔的只数。
7.老师带了56个学生去划船,共乘坐10条船,其中大船坐6人,小船坐4人,大船有 条,小船有 条。
【答案】8;2
【知识点】鸡兔同笼问题
【解析】【解答】解:大船:(56-10×4)÷(6-4)=8(条); 小船:10-8=2(条)。
故答案为:8,2。
【分析 】 先假设10条船全是小船,所乘坐的人数比56人少,少的数是把每条大船少算了(6-4)人,看看这个数里有多少个(6-4),也就知道有多少条大船,共乘船数减去大船就是小船。
8.琳琳去买铅笔,她用10元钱买了价钱为5角和1元的两种铅笔共13支。5角的铅笔有 只,1元的铅笔有 支。
【答案】6;7
【知识点】鸡兔同笼问题
【解析】【解答】解:5角=0.5元,5角的铅笔:
(13×1-10)÷(1-0.5)
=3÷0.5
=6(支)
1元的硬币:13-6=7(支)
故答案为:6;7。
【分析】假设都是1元的,那么总钱数是13×1,一定比10元多,是因为把5角的也当作1元来计算了。用一共多算的钱数除以每支铅笔多算的钱数即可求出5角的支数,进而求出1元的支数。
9.某班捐款总额为240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有 张。
【答案】10
【知识点】鸡兔同笼问题
【解析】【解答】解:5元和2元各多少张:(50×10-240)÷(8+3)=20(张); 50-20×2=10(张)。
故答案为:10。
【分析】我们先假设50张全是10元的,所得的钱数比总额多,多出的钱数是把5元和2元全算成10元了,这样他们两个合起来每两张就多加了(8+5)元,看一下多余的钱中有几个(8+5),求出的数是2元和5元各一份的数,10元的张数就用50减去所得数的2倍。
10.(2019四下·通榆期末)六年级同学分组参加课外兴趣小组,每人只能参加一个小组,科技类每5人一组,艺术类每3人一组,共有37名学生报名,正好分成9组,参见科技类的学生有 个组,参加艺术类的有 个
组。
【答案】5;4
【知识点】鸡兔同笼问题
【解析】【解答】(5×9-37)÷(5-3)
=8÷2
=4(个)
9-4=5(个)
故答案为:5;4。
【分析】这是鸡兔同笼问题,利用假设法,根据艺术类的组数=(科技组每组人数×分成的组数-实际的人数)÷(科技组每组的人数-艺术组每组的人数),即可求出艺术类的组数,然后根据科技类的组数=总组数-艺术类的组数,即可解答。
三、解答题
11.(2022四下·大渡口期末)学校环保小分队12人参加植树活动。男生每人栽了3棵,女生每人栽了2棵,一共栽了32棵。请问男、女生各几人?
【答案】解:假设全部是男生,则女生的人数:
(12×3-32)÷(3-2)
=(36-32)÷1
=4÷1
=4(人)
男生人数:12-4=8(人)
答:男生8人,女生4人。
【知识点】鸡兔同笼问题
【解析】【分析】假设全部是男生,女生的人数=(男生平均每人栽树的棵数×男生人数-一共栽树的棵数)÷(男生平均每人栽树的棵数-女生平均每人栽树的棵数);男生人数=总人数-女生人数。
12.(2021四下·镇原期末)羽毛球馆的售票窗口在一小时内售出A、B两种比赛门票共26张,共收费1600元。如果每张A票是80元,每张B票是50元,那么售出的A票和B票各有多少张?
【答案】解:B票:(80×26-1600)÷(80-50)
=480÷30
=16(张)
A票:26-16=10(张)
答:售出的A票有10张,售出的B票有16张。
【知识点】鸡兔同笼问题
【解析】【分析】假设售出的全部是A票,则B票的张数=(A票的单价×数量-实际收费金额)÷(A票单价-B票单机);A票张数=A、B两种比赛门票总张数-B票张数。
13.(2019四下·营山期末)两位老师带34名学生去划船,一共租了7只船,正好坐满,其中大船限乘6人,小船限乘4人,大船和小船各租了几只?
【答案】解:假设7只船都是大船,7×6=42(人)
42-(34+2)=6(人)
小船:6÷(6-4)=3(只)
大船:7-3=4(只)
答:大船4只,小船3只。
【知识点】鸡兔同笼问题
【解析】【分析】此题主要考查了鸡兔同笼的应用,可以应用假设法解答, 假设7只船都是大船,用每只大船乘坐的人数×大船的只数=一共可以乘坐的人数,然后用一共可以乘坐的人数-现在的总人数=多出的人数,然后用多出的人数÷每只大船比小船多坐的人数=小船的只数,最后用船的总只数-小船的只数=大船的只数,据此列式解答。
14.同学们正在进行乒乓球比赛,有10张乒乓球桌正在进行双打、单打比赛,一共有34名同学正在比赛。单打的球桌有几张?
【答案】解:假设全部是双打的球桌,则单打的球桌有:
(10×4-34)÷(4-2)
=(40-34)÷2
=6÷2
=3(张)。
答:单打的球桌有3张。
【知识点】鸡兔同笼问题
【解析】【分析】单打的球桌张数=(假设全部是双打的球桌的人数-实际比赛的人数)÷(每桌双打的人数-每桌单打的人数)。
15.(2020四下·清丰期末)2020年新型冠状病毒肆虐全球,武汉被封城期间,为了保障蔬菜的供应,准备用8辆大、小卡车往城里运38吨蔬菜,大卡车每辆每次运6吨,小卡车每辆每次运4吨。大、小卡车各用几辆恰好能一次运完?(每辆车都装满)
【答案】解:小卡车:(8×6-38)÷(6-4)
=10÷2
=5(辆)
大卡车:8-5=3(辆)
答:大卡车用3辆、小卡车用5辆恰好能一次运完。
【知识点】鸡兔同笼问题
【解析】【分析】这是一道鸡兔同笼问题,可以用假设法解答;如果假设全用大卡车,可以有下面的式子:
小卡车的数量=(6×卡车总数量-运送的蔬菜总吨数)÷(大客车-次运的吨数-小卡车一次运的吨数),大卡车的数量=卡车总数量-小卡车的数辆。
16.一次数学竞赛共有20道题,做对一道题得5分,做错一道题倒扣3分。刘冬得了52分,你知道刘冬做对了几道题吗?
【答案】解:(20×3+52)÷(5+3)
=112÷8
=14(道)
答:刘冬做对了14道题。
【知识点】鸡兔同笼问题
【解析】【分析】假设都做错了,则会扣分20×3,不仅不得分还会扣分。用一共扣的分数加上本来得的分数就是分数差,用分数差除以做对和做错一道题的分数差(5+3)即可求出做对的题数。
17.(2021四下·下城期末)当前我国新冠疫苗分别有一针型、两针型和三针型三种。阳光学校的老师们完成接种两针型和三针型的有78人,共接种了202针,接种两针型和三针型的老师各有几人?
【答案】解:假设全部接种的三针型,则接种两针型的人数有:
(78×3-202)÷(3-2)
=(234-202)÷1
=32÷1
=32(人)
78-32=46(人)
答:接种的三针型的有46人,接种两针型的有32人。
【知识点】鸡兔同笼问题
【解析】【分析】假设全部接种的三针型,则接种两针型的人数=(接种的总人数×三针型的针数-共接种的总针数)÷(三针型的针数-两针型的针数),接种三针型的人数=接种的总人数-接种两针型的人数。
18.一辆汽车装运玻璃仪器360个,每个运费5元。若损坏一个仪器不但不给运费,还要赔50元,最后只收到运费1250元。损坏了几个仪器
【答案】解:(360×5-1250)÷(5+50)=10(个)
答:损坏了10个仪器。
【知识点】鸡兔同笼问题
【解析】【分析】假设没有损坏,则共有运费360×5元,一定大于1250元,是因为把损坏一个赔的50元也当作5元来计算运费了;这样用一共多算的钱数除以损坏一个多算的钱数即可求出损坏仪器的个数。
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1