2022-2023年数学中考复习训练:一次函数
班级:_________ 姓名:_________ 学号:__________
选择题(本大题共10小题,在每小题列出的选项中,选出符合题目的一项)
1.关于一次函数y=﹣2x+1,下列说法不正确的是( )
A.图象与y轴的交点坐标为(0,1) B.图象与x轴的交点坐标为(,0)
C.y随x的增大而增大 D.图象不经过第三象限
2.一次函数的图象过点,,,则( )
A. B. C. D.
3.在同一平面直角坐标系中,一次函数与的图像可能是( )
A.B.C.D.
4.直线与直线的交点在y轴上,则k的值为( )
A. B. C.2 D.
5.已知,甲、乙两地相距720米,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人离B地的距离y(单位:米),下列说法正确的是( )
A.乙先走5分钟 B.甲的速度比乙的速度快
C.12分钟时,甲乙相距160米 D.甲比乙先到2分钟
6.如图所示,一次函数的图象经过点,则方程的解是( )
A. B. C. D.无法确定
7.若一次函数y=kx+b的图象与直线y=-x+1平行,且过点(8,2),则此一次函数的解析式为( )
A.y=-x-2 B.y=-x-6 C.y=-x-1 D.y=-x+10
8.根据图像,可得关于x的不等式的解集是( )
A. B. C. D.
9.在同一平面直角坐标系中,一次函数与的图象如图所示,小星根据图象得到如下结论:
①在一次函数的图象中,的值随着值的增大而增大;
②方程组的解为;
③方程的解为;
④当时,.
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
10.如图,一次函数的图象与x轴,y轴分别交于点A,B,点是x轴上一点,点E,F分别为直线和y轴上的两个动点,当周长最小时,点E,F的坐标分别为( )
A., B.,
C., D.,
二、填空题(本大题共6小题,在横线上填上合理的答案)
11.已知一次函数的图象经过点,则______.
12.将直线向下平移2个单位长度,平移后直线的解析式为_____.
13.如图,平面直角坐标系xoy中,直线y1=k1x+b1的图像与直线y2=k2x+b2的图像相交于点(-1,-3),当y1<y2时,实数x的取值范围为__________.
14.若一次函数的图象与y轴的交点在x轴的下方,则m的取值范围是_______.
15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为______.
16.《庄子 天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线与轴交于点,过点作轴的平行线交直线于点,过点作轴的平行线交直线于点,以此类推,令,,,,若对任意大于1的整数恒成立,则的最小值为___________.
三、解答题(本大题共6小题,解答应写出文字说明,证明过程或演算步骤)
17.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.
(1)求直线l2的解析式;
(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
18.如图一次函数的图象经过点,与x轴交于点B,与正比例函数的图象交于点C,点C的横坐标为1.
(1)求的函数表达式.
(2)若点D在y轴负半轴,且满足,求点D的坐标.
(3)若,请直接写出x的取值范围.
19.在平面直角坐标系上,点A为直线OA第一象限上一点,AB垂直x轴于B,OB=4,AB=2,
(1)求直线OA的解析式;
(2)直线y=2x上有一点C(x轴上方),若AOC为直角三角形,求点C坐标.
20.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,,分别表示小军与观光车所行的路程与时间之间的关系.
根据图象解决下列问题:
(1)观光车出发______分钟追上小军;
(2)求所在直线对应的函数表达式;
(3)观光车比小军早几分钟到达观景点?请说明理由.
21.如图,点A(1,4)在正比例函数的图象上,点B(3,n)在正比例函数的图象上.
(1)求m,n的值;
(2)在x轴找一点P,使得PA+PB的值最小,请求出PA+PB的最小值.
答案:
1.C 2.B 3.D 4.C 5.D 6.C 7.D 8.D 9.B 10.C 11.1
12. 13.x<-1 14.且 15. 16.2
17.解:(1)在y=x+3中,令y=0,得x=﹣3,
∴B(﹣3,0),
把x=1代入y=x+3得y=4,
∴C(1,4),
设直线l2的解析式为y=kx+b,
∴,解得,
∴直线l2的解析式为y=﹣2x+6;
(2)AB=3﹣(﹣3)=6,
设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),
MN=|a+3﹣(﹣2a+6)|=AB=6,
解得a=3或a=﹣1,
∴M(3,6)或(﹣1,2).
18.解:(1)∵一次函数与正比例函数的图象交于点C,点C的横坐标为1,
∴把x=1代入正比例函数得:,
∴点,
∴把点、代入一次函数得:
,解得:,
∴AB的函数解析式为;
(2)由(1)得:,AB的函数解析式为,
∴令y=0时,则有,
∴点,
∴OB=4,
令表示点C的横坐标,表示点C的纵坐标,则由图象可得:,
∵,
∴,
∴,
∴,
∵点D在y轴负半轴,
∴;
(3)由图象可得:
当时,则x的取值范围为.
19.(1)解:∵AB垂直x轴于B,OB=4,AB=2,
∴A(4,2),
设直线OA的解析式为y=kx,
则2=4k,解得k=,
∴直线OA的解析式为y=x;
(2)解:设点C坐标为(x,2x),
∵A(4,2),
∴OA2=42+22=20,OC2=x2+(2x)2=5x2,AC2=(4-x)2+(2x-2)2=5x2-16x+20,
当OA2+OC2=AC2时,
20+5x2=5x2-16x+20,
解得x=0(舍去),
当OA2+AC2=OC2时,
20+5x2-16x+20=5x2,
解得x=,
∴点C坐标为(,5),
当OC2+AC2=OA2时,
5x2+5x2-16x+20=20,
解得x=或x=0(舍去),
∴点C坐标为(,),
综上,点C坐标为(,5)或(,).
20.解:(1)由图像可知,在21min时,,相交于一点,表示在21min时,小军和观光车到达了同一高度,此时观光车追上了小军, 观光车是在15min时出发,
∴,
∴观光车出发6分钟后追上小军;
(2)设所在直线对应的函数表达式为,由图像可知,直线分别经过(15,0)和(21,1800)两点,将两点带入函数表达式得:
解得:
∴函数表达式为;
(3)由图像可知,到达观景点需要3000m的路程,小军到达观景点的时间为33min,
∵观光车函数表达式为,
∴将带入,可知观光车到达观景点所需时间为,
∴,
∴观光车比小军早8分钟到达观景点.
答:(1)观光车出发6分钟追上小军;
(2)所在直线对应的函数表达式为;
(3)观光车比小军早8分钟到达观景点,理由见解析.
21.(1)解:∵点A(1,4)在正比例函数的图象上,点B(3,n)在正比例函数的图象上.
∴
∴.
(2)解:作点A(1,4)关于x轴对称的点,连接,交x轴于点P,此时PA+PB的值最小, PA+PB=.
过点作∥x轴,过点B作∥y轴,和相交于点H,
在Rt△中,∠H=90°,
则,
∴PA+PB的最小值为 .