【学习方案】第二章 第1节 共价键 学案(pdf版,含答案)-高中化学人教版(2019)选择性必修2

文档属性

名称 【学习方案】第二章 第1节 共价键 学案(pdf版,含答案)-高中化学人教版(2019)选择性必修2
格式 zip
文件大小 1.3MB
资源类型 试卷
版本资源 人教版(2019)
科目 化学
更新时间 2023-04-18 15:15:51

文档简介

第二章 分子结构与性质
第一节 共价键
第一课时 共价键
续表
以形成化学键的两原子核的 为轴做旋
特征 转操作,共价键的电子云的图形 ,这种
特征称为 。
1.共价键的概念和特征 (2)π键
原子间通过 所形成的相互作用。 形成 由两个原子的p轨道“肩并肩”重叠形成
→饱和性→决定分子的组成
特征 p-pπ键
→方向性→决定分子的立体构型 p—pπ键的形成
【特别提醒】 π键的电子云形状与σ键的电子云形状有明显差
所有共价键都有饱和性,并不是所有共价键 别:每 个 π键 的 电 子 云 由 两 块 组 成,它 们 互
特征
都具有方向性,如两个s电子形成共价键时就没 为 ,这种特征称为 ;π键
。 旋转;不如有方向性 σ键 ,较易 。
2.形成条件 (3)判断σ键、π键的一般规律
同种非金属元素或者不同种非金属元素原 共价单键为 键;共价双键中有一
子之间,某些金属原子与非金属原子之间形成共 个 键,另一个是 键;共价三键
价键。如AlCl3、BeCl2、FeCl3 等所含化学键为共 由一个 键和两个 键构成。
价键。
3.共价键的类型(按成键原子的原子轨道重
叠方式分类)
(1)σ键 1.σ键与π键的比较
形成 由成键原子的s轨道或p轨道重叠形成 共价键类型 σ键 π键
原子轨道
s-s型 “头碰头”重叠 “肩并肩”重叠
H—H的s—sσ键的形成 重叠方式

s-p型

H—Cl的s—pσ键的形成
示意图
p-p型
Cl—Cl的p—pσ键的形成
·30·
续表 D.6个σ键,3个π键
对称类型 轴对称 镜面对称 变式1:关于σ键和π键的比较,下列说法中
原子轨道
大 小 不正确的是 ( )
重叠程度
A.σ键是轴对称的,π键是镜面对称的
键的强度 较大 较小
化学活泼性 不活泼 活泼 B.σ键是“头碰头”式重叠,π键是“肩并肩”
共价单键是σ键;共价双键中一个是σ键,一个 式重叠
成键规律
是π键;共价三键中一个是σ键,两个是π键。 C.σ键不能断裂,π键容易断裂
【特别提醒】 D.氢原子只能形成σ键,氧原子可以形成σ
①s轨道与s轨道形成σ键时,电子并不是 键和π键
只在两核间运动,只是电子在两核间出现的概 【典例2】 下列分子中含有两个π键的是
率大。 ( )
②因s轨道是球形的,故s轨道与s轨道形 A.O2 B.N2 C.H2O D.C2H4
成σ键时,无方向性。两个s轨道只能形成σ键, 变式2:下列分子中,既含有σ键又含有π键
不能形成π键。 的是 ( )
③两个原子间可以只形成σ键,但不能只形 A.CH4 B.HCl
成π键。 C.CH2 CH2 D.F2
2.共价键强弱的判断
(1)由原子半径和共用电子对数判断:成键
原子的原子半径越小,共用电子对数越多,则共
价键越牢固,含有该共价键的分子越稳定。
1.下图表示氢原子的电子云重叠示意图。
(2)由键能判断:共价键的键能越大,共价键
以下各种说法中错误的是 ( )
越牢固,破坏共价键消耗的能量越大。
(3)由键长判断:共价键的键长越短,共价键
越牢固,破坏共价键消耗的能量越大。
(4)由电负性判断:元素的电负性越大,该元 A.
图中电子云重叠意味着电子在核间出现
素的原子对共用电子对的吸引力越大,形成的共 的机会多
价键越稳定。 B.氢原子的核外的s轨道重叠形成共价键
C.氢原子的核外电子呈云雾状,在两核间
分布得密一些,将两核吸引
D.氢原子之间形成σ键,s-sσ键没有方
【典例1】 下列有关 CH2 CH C N 分 向性
子中所含化学键数目的说法中正确的是 ( ) 2.下列分子中存在的共价键类型完全相同
A . 3 个 σ 键 ,3 个 π 键 (从σ键、π键的形成方式角度分析)的是 ( )
B.4个σ键,3个π键 A.CH4 与NH3 B.C2H6 与C2H4
C.6个σ键,2个π键 C.H2 与Cl2 D.Cl2 与N2
·31·
3.下列四组物质中只含有共价键的是 (9)形成共价键后体系的能量降低,趋于稳定。
( ) ( )
、 、 、 、 (10)共价键的饱和性是由成键原子的未成A.H2 O3 C60 N60
对电子数决定的。 ( )
B.Cl2、S8、NaCl、Na2O2、NaHCO3 (11)共价键的饱和性决定了分子内部原子的
C.P4、Br2、H2O2、Xe、XeF4 数量关系。 ( )
CH2COOH (12)共价键的方向性是由成键原子轨道的
D.NH4HCO3、N2H4、NH3、NH2、KNO3 方向性决定的。 ( )
4.在N2F2 分子中,所有原子均符合8电子 (13)原子轨道在空间都具有方向性。
稳定结构,则该分子中两个氮原子之间的键型构 ( )
成是 ( ) 7.NH3 分子中N原子为什么是1个,而 H
A.仅有一个σ键 原子是3个
B.仅有一个π键
C.一个σ键,一个π键
D.一个σ键,两个π键
5.从电负性的角度来判断下列元素的原子 8.从电负性角度理解共价键、离子键的形成
之间易形成共价键的是 ( ) 条件,完成表中内容。
A.Na和Cl B.H和F 原子 Na Cl H Cl C O
C.K和F D.Ca和O 电负性 0.9 3.0 2.1 3.0 2.5 3.5
6.判断正误,正确的画“√”,错误的画“×”。 电负性之差(绝对值)
(1)共价键的成键原子只能是非金属原子。 结论:当原子的电负性相差很大,化学反应
( ) 形成的电子对不会被共用,形成的将是
(2)在任何情况下,都是σ键比π键强度大。 键;而 键是电负性相差不大的原子之间
( ) 形成的化学键。
(3)在所有分子中都存在化学键。 ( ) 9.分析下列化学式中画有横线的元素,选出
(4)分子的稳定性与分子间作用力的大小无 符合要求的物质前的字母填空。
关。 ( ) A.NH3 B.H2O C.HCl D.CH4
(5)σ键比π键的电子云重叠程度大,形成的 E.C2H6 F.N2
共价键强。 ( ) (1)所 有 的 价 电 子 都 参 与 形 成 共 价 键 的
(6)s-sσ键与s-pσ键的电子云形状对称 是 。
性相同。 ( ) (2)只 有 一 个 价 电 子 参 与 形 成 共 价 键 的
(7)σ键能单独形成,而π键一定不能单独形 是 。
成。 ( ) (3)最外层有未参与成键的电子对的是
(8)σ键可以绕键轴旋转,π键一定不能绕键 。
轴旋转。 ( ) (4)既有σ键又有π键的是 。
·32·
8.在N2F2 分子中,所有原子均符合8电子
稳定结构,则该分子中的共价键类型是 ( )
A.仅有σ键
1.H2O分子中每个 O原子结合2个 H 原 B.三个σ键,两个π键
子的根本原因是 ( ) C.两个σ键,两个π键
A.共价键的方向性 B.共价键的键长 D.三个σ键,一个π键
C.共价键的键角 D.共价键的饱和性 9.如图,写出下列价键的名称,并各举一例
2.下列物质中,σ键数目与π键数目之比为 说明含有这种价键类型的物质。
1∶1的是 ( )
A.N2 B.CS2 ① ② ③
C.HCHO D.H2O2
3.下列分子中,只有σ键而没有π键的是
( )
A.CO2 B.CH4
C.CH CH ④ ⑤2 2 D.CH≡CH
4.下列物质的分子中,既含有σ键又含有π ① ② ③ ④ ⑤
化学键类型
键的是 ( )
举例
A.C3H8 B.H2O2
C.CCl4 D.CO 10.在下列分子中
:①HF,②Br2,③H2O,
5.下列分子既不存在s-pσ键,也不存在 ④N2
,⑤CO2,⑥H2,⑦H2O2,⑧HCN。
p-pπ键的是 ( )
(1)分子中只有σ键的是
A.SCl B.N (填序号,下同)。2 2
C.HF D.HS (2)分子中含有 π键的是 2
6.下列说法中不正确的是 ( ) 。
A.σ键比π键重叠程度大,形成的共价键强 (3)分子中所有原子都满足最外层8电子结
B.两个原子之间形成共价键时,最多有一个 构的是 。
σ键 (4)分子中含有由两个原子的s轨道重叠形
C.气体单质分子中,一定含有σ键 成的σ键的是 。
D.N (5)分子中含有由一个原子的s轨道与另一2 分子中有一个σ键,两个π键
7.下列物质的分子中既有σ键,又有π键, 个原子的p轨道重叠形成的σ键的是
并含有非极性键的是 ( ) 。
①NH3 ②N2 ③H2O ④HCl ⑤C2H
(6)分子中含有由一个原子的p轨道与另一
4
⑥CH 个原子的p轨道重叠形成的σ键的是 2 2
A.②⑤⑥ B.①②⑤⑥ 。
C.②③④ D.②④⑥
·33·
第二课时 键参数———键能、键长与键角
2.键长
(1)键长是构成化学键的两个原子的 ,
因此 决定化学键的键长, 越
1.键能 小,共价键的键长越短。
(1)键能是指 中1mol化学键解离成 (2)键长与共价键的稳定性之间的关系:共
所吸收的能量。键能的单位是 。 价键的键长越短,往往键能越 ,表明共
键能通常是 条件下的标准值。例如, 价键越 。
H—H的键能为4360.kJ·mol-1。 (3)下列三种分子中:①H2、②Cl2、③Br2,共
(2)下表中是 H—X的键能数据: 价键的键长最长的是 ,键能最大的
共价键 H—F H—Cl H—Br H—I 是 。
键能/(kJ·mol-1) 568 431.8 366 298.7 (4)键长的应用
①若使2molH—Cl断裂为气态原子,则发 ①一般键长越短,键能越大,共价键越稳定,
生的能量变化是 的能量。 分子越稳定。
②表中共价键最难断裂的是 ,最易 ②键长的比较方法
断裂的是 。 a.根据原子半径比较,同类型的共价键,成
③由表中键能数据大小说明键能与分子稳 键原子的原子半径越小,键长越短。
定性的关系:HF、HCl、HBr、HI的键能依次 b.根据共用电子对数比较,相同的两个原子
,说明四种分子的稳定性依次 ,即 间形成共价键时,单键键长>双键键长>三键
HF分子最稳定,最 分解,HI分子最不 键长。
稳定,最 分解。 3.键角
(3)键能的应用 (1)键角是指在 分子中,两个相邻
①表示共价键的强弱 共价键之间的夹角。多原子分子的键角一定,表
键能越大,断开化学键时需要的能量越多, 明共价键具有 。键角是描述分子空间
化学键越稳定。 结构的重要参数。
②判断分子的稳定性 (2)根据空间结构填写下列分子的键角:
结构相似的分子中,共价键的键能越大,分
分子空间结构 键角 实例
子越稳定。 正四面体形 109°28' CH4、CCl4
③判断化学反应的能量变化 平面形 120° 苯、乙烯、BF3
在化学反应中,旧化学键的断裂吸收能量, 三角锥形 107° NH3
新化学键的形成释放能量,因此反应焓变与键能 V形(或角形) 105° H2O
的关系为ΔH=反应物键能总和-生成物键能 直线形 180° CO2、CS2、CH≡CH
总和;ΔH<0时,为放热反应;ΔH>0时,为吸 (3)键角的应用
热反应。 ①键长和键角决定分子的空间结构
·34·
②常见分子的键角与分子空间结构
化学式 结构式 键角 空间结构
CO2 O C O 180° 直线形
N 【典例1】 下列说法中正确的是 ( )
NH3 107° 三角锥形
H H H A . 分 子 的 结 构 是 由 键 角 决 定 的
O
H2O 105° V形 B.共价键的键能越大,共价键越牢固,由该
H H
F 键形成的分子越稳定
BF3 B 120° 平面三角形 C.CF4、CCl4、CBr4、CI4 中C—X(X F、Cl、
F F Br、I)的键长、键角均相等
H
D.H2O分子中两个O—H的键角为180°
CH4 H C H 109°28' 正四面体形
变式1:下列事实不能用键能的大小来解释H
的是 ( )
A.氮元素的电负性较大,但N2 的化学性质
很稳定
B.稀有气体一般难发生反应
等电子原理
C.HF、HCl、HBr、HI的稳定性逐渐减弱(1)等电子体:原子总数相同,价电子总数也
D.HF比 H2O稳定
相同的微粒。如:CO和N2,CH4 和NH+4 。
【典例2】 对比以下几个反应式:Cl+Cl
(2)等电子体原理:等电子体具有相似的化
→Cl ΔH =-247kJ·mol-12 1 ;O+O →
学键特征,它们结构相似,物理性质相近,但化学
, 。 O2 ΔH2=-493kJ
·mol-1;N+N →N 性质不相同 此原理称为等电子原理 2
(3)常见实例: ΔH3=-946kJ
·mol-1。可以得出的结论是
( )
类型 实例 空间构型
A.在常温下,氮气比氧气和氯气稳定二原子10电子
N2、CO、NO+、C2―2 、CN- 直线形
的等电子体 B.氮、氧和氯的单质常温下为气体
三原子16电子 CO2、CS2、N2O、NCO-、 C.氮、氧和氯都是双原子分子
直线形
的等电子体 NO+2 、N-3 、NCS-、BeCl2 D.氮气、氧气和氯气的密度不同
三原子18电子
NO―、O 、SO V形 变式2:结合事实判断CO和N2 3 2 2 相对更活泼
的等电子体
的是 ,试用下表中的键能数据解释其相
四原子24电子
NO-3 、CO2―3 、SO3、BF3 平面三角形 对更活泼的原因:
的等电子体
五原子32电子 SiF4、CCl4、BF―、SO2―4 4 、 四个σ键,正四 。
的等电子体 PO3―4 面体形 CO C—O C O C≡O
七原子48电子 六个σ键,正八 ( · -1)
、 -、 2―、 3― 键能 kJ mol 357.7 798.9 1071.9SF6 PF6 SiF6 AlF6
的等电子体 面体 N2 N—N N N N≡N
键能(kJ·mol-1 ) 154.8 418.4 941.7
·35·
·· ··
A.H+[· O·· ·O·]2-H+·
·· ··
··
B.H+[· F· -· ·]
··
··
1.下列叙述中的距离属于键长的是 ( ) C.H N H
A.氨分子中两个氢原子间的距离 H
B.氯分子中两个氯原子间的距离 ··
D.H· O·· ·
C.金刚石晶体中任意两个相邻的碳原子核 ··
H
间的距离 6.已知CO2 为直线形结构,SO3 为平面正
D.氦气中两个相邻原子间的核间距 三角形结构,NF3 为三角锥形结构,请推测COS、
2.关于键长、键能和键角,下列说法中不正 CO2-3 、PCl3 的空间结构。
确的是 ( )
A.键角是描述分子立体结构的重要参数
B.键长的大小与成键原子的半径和成键数
目有关 7.1919年,Langmuir提出等电子原理:原
C.键能越大,键长越长,共价化合物越稳定 子数相同、电子总数相同的分子,互称为等电子
D.键角的大小与键长、键能的大小无关 体。等电子体的结构相似、物理性质相近。
3.已知通常分子中所含的键能越大,分子越 (1)根据上述原理,仅由第二周期元素组成
稳定。参考下表中化学键的键能数据,判断下列 的共价分子中,互为等电子体的是 和
分子中,受热时最不稳定的是 ( ) ; 和 。
化学键 H—H H—Cl H—Br H—I (2)此后,等电子原理又有所发展。例如,由
键能/(kJ·mol-1)436.0 431.8 366 298.7 短周期元素组成的微粒,只要其原子数相同,各
A.氢气 B.氯化氢 原子最外层电子数之和相同,也可互称为等电子
C.溴化氢 D.碘化氢 体,它们也具有相似的结构特征。在短周期元素
4.NH3 分子的空间构型是三角锥形,而不是 组成的物质中,与NO-2 互为等电子体的分子有
正三角形的平面结构,解释该事实的充分理由是 、 。
( ) 8.请回答下列各题:
A.NH3 分子是极性分子 (1)写出与 H2O分子互为等电子体的两种
B.分子内3个 N—H 键的键长相等,键角 微粒的化学式 、 。
相等 (2)写出一种与NO-3 互为等电子体的微粒
C.NH3 分子内3个N—H键的键长相等,3 的化学式 。
个键角都等于107° (3)写出一种由第二周期元素组成的且与
D.NH3 分子内3个N—H键的键长相等,3 CO互为等电子体的阴离子的电子式 。
个键角都等于120° (4)双原子14电子的等电子体的共同特点是
5.下列表示原子间形成共价键的表示方法 物质中都具有共价三键,请举出相应的3个例子
正确的是 ( ) 、 、 (分子或离子),每
·36·
分子或离子中含 个σ键, 个 B.稀有气体一般难发生反应
π键。 C.HF、HCl、HBr、HI的稳定性逐渐减弱
D.F2 比O2 更容易与 H2 反应
5.已知N2+O2 2NO为吸热反应,ΔH
=+180kJ·mol-1,其中N≡N、O O键的键
1.下列说法中能够用键能的大小作为主要 能分别为946kJ·mol-1、498kJ·mol-1,则
依据来解释的是 ( ) N—O键的键能为 ( )
A.常温常压下氯气呈气态,而溴单质呈 A.1264kJ·mol-1 B.632kJ·mol-1
液态 C.316kJ·mol-1 D.1624kJ·mol-1
B.硝酸是挥发性酸,而硫酸、磷酸是不挥发 6.某些化学键的键能如下表所示。(单位:
性酸 kJ·mol-1)
C.稀有气体一般难发生化学反应 键 H—H Br—Br I—I Cl—Cl H—Cl H—I H—Br
D.空气中氮气的化学性质比氧气稳定 键能 436.0 193.7 152.7 242.7 431.8 298.7 366
2.通常把原子总数和价电子总数相同的分 (1)1molH2在2molCl2中燃烧,放出的热量为
子或离子称为等电子体。人们发现等电子体的 kJ。
空间结构相同,则下列有关说法中正确的是 (2)在一定条件下,1molH2 与足量的Cl2、
( ) Br2、I2 分别反应,放出热量由多到少的是 。
A.CH4 和NH+4 是等电子体,键角均为60° A.Cl2>Br2>I2 B.I2>Br2>Cl2
B.NO-3 和CO2-3 是等电子体,均为平面正 预测1molH2 在足量F2 中燃烧比在足量
三角形结构 Cl2 中燃烧放热 。
C.H +3O 和PCl3 是等电子体,均为三角锥 7.试根据下表回答问题。
形结构 某些共价键的键长数据如下表所示:
D.B3N3H6 和苯是等电子体,B3N3H6 分子 共价键 键长(nm)
中不存在“肩并肩”式重叠的轨道 C—C 0.154
3.下列说法中正确的是 ( ) C C 0.134
A.分子的结构是由键角决定的 C≡C 0.120
B.共价键的键能越大,共价键越牢固,由该 C—O 0.143
C O 0.122
键形成的分子越稳定
N—N 0.146
C.CF4、CCl4、CBr4、CI4 中C—X键的键长、
N N 0.120
键角均相等
N≡N 0.110
D.H2O分子中两个O—H键的键角为180°
根据表中有关数据,你能推断出影响共价键
4.下列事实不能用键能的大小来解释的是
键长的因素主要有哪些 其影响的结果怎样
( )
A.N元素的电负性较大,但N2 的化学性质
很稳定
·37·部分参考答案
第一章 原子结构与性质 二、1.概率密度分布 2.空间运动状态 90% 3.(1)一个
空间运动状态 (2)①球 大 ②哑铃 (3)1 3 5 7
第一节 原子结构 深度思考
第一课时 能层与能级 基态与激发态 原子光谱 1.由于出现能级交错现象,K原子排满第一层和第二层后,
【知识梳理】 在排第三层时,先排满3s能级、3p能级,最后一个电子进入4s能
一、1.(1)K L M N 2.(2)s p d f s p d f
二、2.(3)特征谱线 级而不是3d能级,所以它的原子结构示意图为 。
深度思考
, 。 2.由构造原理可知,由于能级交错现象,所以在电子填充过1.在多电子原子中 离核距离不同的电子的能量是不同的
, 程中,最外层最多填满 能级和 能级。而 能级只有 个原子按电子的能量差异 可将核外电子分为不同的能层,分别用符号 s p s 1
K、L、M、N、O、P、Q表示第一、二、三、四、 、 、
轨道, 能级有 个原子轨道,根据泡利原理知, 个原子轨道最
五 六 七能层。能层越 p 3 4
, 。 多容纳 个电子,故原子最外层最多不超过 个电子。同理可分高 电子的能量越高 同一能层上的电子,能量也可能不同,按照 8 8
析次外层不超过 个电子。而 层为最外层时,最多容纳 个
能量差异又可将能层分为不同的能级,即s、p、d、f……能级。任
18 K 2
电子。
一能层的能级总是从s能级开始,而且能级数等于该能层序数,
不一定一致。电子排布式的书写顺序为能层由小到大,同
即第一能层(K能层)只有1个能级(1s),第二能层(L能层)有2 3.
( ), ( ) ( 、 ), 一能层上的能级按s、p、d、f……的顺序排列,其顺序是电子离核个能级 2s和2p 第三能层 M能层 有3个能级 3s3p和3d
( ) ( 、 、 、 ), 。 的远近顺序;构造原理中电子进入能级的顺序为先填入能量最低第四能层 N能层 有4个能级 4s4p4d4f 以此类推
, 。 的能级,再填入能量较高的能级,电子排布式是按能级能量的顺2.①能层也就是电子层 只是说法不同 ②不同能层的同种
序书写的。
能级最多容纳的电子数相同,但电子具有的能量不同。
【 】 4.从基态与激发态的概念分析,因任何原子核外电子都有基态典例精解
【 】 : , 与激发态,所以任何原子核外都存在所有不同的能级。当氢原子从典例1 D 解析 同一原子中能层序数越大 形状相同的
, , 、、 。 基态吸收能量后,其电子可以跃迁到原子轨道中电子的能量越高 离核越远 ABC项错误 2s
能级上,出现2s1 的情况。
【 】 : , 5.(1)典例2 A 解析 在电流作用下 基态氖原子的电子吸收 EK()
能量跃迁到较高能级,变为激发态原子,这一过程要吸收能量,不 2E1s()
会发出红色的光;而电子从较高能量的激发态跃迁到较低能量的 3E2p激发态乃至基态时,将释放能量,从而产生红光,故A项正确。 6.4s
变式1.C 7.不是
,构造原理是根据光谱事实总结的一般规律,适用于
变式2.B 绝大多数原子。
【当堂训练】 8.构造原理中的电子排布顺序,其实质是各能级的能量高低顺
1.D 2.C 3.B 4.D 5.B 6.D 7.B 8.A 9.D 序,有如下关系:ns<(n-2)f<(n-1)d10.A 11.C 12.(1)Be、N、Ne (2)Na、Mg (3)Be、M

g 典例精解

【课后巩固】 【典例1】 B 解析:3s
1→3p1、1s1→2s1、3d6→4p6 都为由较
1.A 2.B 3.A 4.A 低能态跃迁到较高能态,吸收能量。
5.(1)C Na (2)N M 【g 典例2
】 A 解析:s能级的原子轨道的形状都是球形的,
6.(1)O N (2)3 (3)2 (4)3NO +H O 2HNO 且能层序数越大
,轨道半径也越大,电子能量越高,A正确;电子
2 2 3
+NO 云是用小点的疏密来表示空间电子出现的概率密度大小的一种
图形,B错误;“核外电子的概率密度分布看起来像一片云雾,因
7.(1)2 2s和2p Fe (2)2N2H4+N2O4 而被形象地称作电子云”,但电子云不是实际存在的,C错误;第
一能层没有p能级,D错误。
点燃
3N2+4H2O 变式1.A
第二课时 构造原理与电子排布式 电子云与原子轨道 变式2.D
【知识梳理】 【当堂训练】
一、1.光谱学 2p、3s、3p 构造原理 2.该能级的电子数 1.B 2.D 3.C 4.A 5.D 6.A 7.B 8.B 9.D
1s22s22p63s1 左 3d14s2 10.A
·111·
11.1s22s22p63s23p4 S 【课后巩固】
12.(1)电子排布式中各能级先按能层顺序排列,各能层中按 1.B 2.C 3.C 4.B 5.D 6.C 7.B
能量由低到高排列。 8.(1)N
(2)不一定,如钠的外围电子排布为3s1,简化的电子排布式
(2)[ 4 6 10为 Ne]3s1;溴简化的电子排布式为[Ar]3d104s24p5,外围电子排
布式为4s24p5。 (3)Fe 1s22s22p63s23p63d64s2
(3)不一定,主族元素外围电子就是最外层电子;过渡元素次 (4)Cu [Ar]3d104s1
外层d电子,镧系元素、锕系元素的倒数第三层f电子也可能参加 9.①⑤⑥ ②④ ③ ⑦
反应,也是外围电子。
第二节 原子结构与元素的性质
13.(1)
①13 ②3 5 (2)①1s22s22p63s23p6 ②1s22s22p2
【课后巩固】 第一课时 原子结构与元素周期表
1.C 2.B 3.D 4.D 5.B 6.C 【知识梳理】
7.(1)Ar (2)S2- (3)K+ (4)Cl- 一、1.
8.(1)CO2 SO2 SiO2 CS2(答案合理即可) (2)氟 氯 碱金属 原子序数 周期 基态原子的电子排布式
(3)2s2 3s2 4s2 3d64s2 3d104s1 3d104s2 2s22p2(任写5 锂 3 2 1s
22s1 或[He]2s1
个合理即可) 钠 11 3 1s22s22p63s1 或[Ne]3s1
第三课时 泡利原理、洪特规则和能量最低原理 钾 19 4 1s
22s22p63s23p64s1 或[Ar]4s1
【知识梳理】 1s22s22p63s23p63d104s24p65s1 或铷 37 5
1.(1)顺时针 逆时针 (2)2 相反 [Kr]5s
1
2 2 6 2 6 10 2 6 10 2 6
2.(1)原子轨道 电子对 1s2s2p3s3p3d4s4p4d5s5p6s
1
铯 55 6
3.(1)平行 (2)1s22s22p63s23p63d54s1 或[Xe]6s
1
深度思考 2.
1.泡利原理:在一个原子轨道里最多只能容纳2个电子,而 稀有气体 原子序数 周期 基态原子的电子排布式
且它们的自旋相反;洪特规则:当电子排布在同一能级的不同轨
氦 2 1 1s2
道时,基态原子中的电子总是优先单独占据一个轨道,而且自旋
2 2 6
平行。 氖 10 2 1s2s2p
2.①②③⑤违背了洪特规则,当电子排布在同一能级的不同 氩 18 3 1s22s22p63s23p6
轨道时,原子中的电子总是优先单独占据一个轨道,且自旋平行。 氪 36 4 1s22s22p63s23p63d104s24p6
④违背了泡利原理,一个原子轨道最多只容纳2个电子,而且这2 氙 54 5 1s22s22p63s23p63d104s24p64d105s25p6
个电子的自旋相反。
1s22s2【 】 2p
63s23p63d104s24p64d10典例精解 氡 86 6
【 】 : 4f
145s25p65d106s26 6典例1 ①⑤⑥ ②④ ③ ⑦ 解析 根据核外电子排 p
布规律知,②错误在于电子排完2s轨道后应排2p轨道,而不是 3.(1)碱金属 稀有气体 碱金属 稀有气体 (2)元素的
3p轨道,应为1s22s22p6;③没有遵循洪特规则;⑦违反泡利原理。 原子核外电子排布
【典例2】 C 解析:本题考查的是核外电子排布的基本原 二、1.(1)电子层数 递增
理。要使各原子能量处于最低状态(即基态),核外电子必须遵循
三大原理进行排布。A项中2s轨道没有排满电子就排在了2p
轨道上,显然能量不是最低的;B项中2p轨道上的电子排布不符
合洪特规则,三个电子各占一个p轨道且自旋状态相同时,能量
最低;C项中2p3 为半充满状态,能量最低;D项中2p轨道未排满
就排3s轨道,能量不是最低的。
变式1.D (2)18 8、9、10
变式2.D 2.(1)最后增入电子
【当堂训练】 深度思考
1.A 2.C 3.D 4.B 5.D 6.B 7.B 8.B 9.D 1.周期序数=电子层数=能层数。
10.D 2.主族序数=主族元素的最外层电子数=主族元素的价电
11.(1)4 13 (2)4 1s22s22p63s23p63d5 (3)3d10 子数;稀有气体的价电子排布为1s2 或ns2np6。
·112·
3.因其价 电 子 排 布 为4d55s1,故 应 位 于 元 素 周 期 表 中 的
轨道表示式为 ,是硫元素;②的核外电子排布式为
d区。
4.可划分为s区、p区、d区、ds区、f区;d区、ds区、f区全是 [Ne]3s23p6,是 氩 元 素;③的 最 外 层 电 子 的 轨 道 表 示 式 是
金属元素;s区唯一的一种非金属元素是氢。 ,是磷元素;④的核电荷数是13,是铝元素。同周
【典例精解】
【典例1】 B 解析:除He外,0族元素原子的价电子排布均 期从左到右,主族元素的第一电离能有增大的趋势,但P具有3p
为ns2np6,不是主族元素;基态原子的p能级上有5个电子,即价 轨道半充满的较稳定结构,其第一电离能大于S的,所以四种元
电子排布为ns2np5,该元素一定处于第ⅦA族;原子的价电子排 素的第一电离能由大到小的顺序是Ar、P、S、Al。
布为(n-1)d6~8ns2 的元素处于第Ⅷ族,并非第ⅢB~ⅦB族;基 【典例3】 (1)元素的电负性随着原子序数的递增呈周期性
态原子的N能层上只有1个电子的元素,除主族元素外,还有 的变化(或同周期主族元素,从左到右,电负性逐渐增大) (2)F
Cu、Cr等过渡金属元素。 Na 离子
【典例2】 D 解 析:该 元 素 基 态 原 子 的 价 电 子 排 布 为 解析:(1)把题表中给出的14种元素的电负性按原子序数由
(n-1)dansb,该元素为过渡金属元素,该元素可能位于周期表中 小到大的顺序整理如下:
的d区或ds区。若该元素处于第ⅢB~ⅦB族,原子的价电子数 元素 Li Be B C N O F NaMgAl Si P S Cl
等于族序数,则族序数为a+b,否则不存在这一关系。 原子
变式1.D 3 4 5 6 7 8 9 11 12 13 14 15 16 17序数
变式2.B
电负
【当堂训练】 1.01.52.02.53.03.54.00.91.21.51.82.12.53.0

1.B 2.A 3.D 4.C 5.A 6.C 7.C 8.B
经过上述整理后可以看出:3~9号元素,元素的电负性由小
( ) 1s 2s 29.C 或 碳 p Al或 Cl
↓↑ ↓↑ ↑ ↑ 到大;11~17号元素,元素的电负性也是由小到大。所以元素的
4s24 3 第四周期ⅤA族 电负性同原子半径一样随着原子序数的递增呈周期性的变化(或p p
【课后巩固】 同周期主族元素,从左到右,电负性逐渐增大)。
()
1.C 2.C 3.A 4.C 5.C 6.B 7.B 2 根据上述规律不难得出
,短周期主族元素中,电负性最大
的元素为F,电负性最小的元素为 Na,二者形成的化合物———
8.(1)C (2)①1s22s22p63s1
1s 2s
②< ③
↑↓ ↑↓ NaF为典型的离子化合物。
变式1.C
2p 3 p 哑 铃 ④Al(OH) + 3+↑ ↑ ↑ 3
+3H Al 变式2.B
变式
+3H2O 3.A
【当堂训练】
第二课时 元素周期律
1.(1)× (2)√ (3)× (4)× (5)× (6)× 2.B
【知识梳理】
3.D 4.D 5.C 6.C 7.C 8.A 9.B 10.C
1.(1)增大 减小 (2)①越小 ②电子层数 越大
11.(1)F (2)CN>O>F
2.(1)①气态 一个 气态基态 ②a.最小 最大 增大
··
· ·
b.变小 (3)H· N·H H N H HNO3 NH4NO3··
3.(1)①化学键 ②不同 吸引力 越大 ③4.0 1.0 H H
(2)①变大 ②变小 (4)1s22s22p63s23p63d54s1 或 [Ar]3d54s1 3d54s1
(3)①小于 大于 1.8 3d 4s
【 】 典例精解 ↑ ↑ ↑ ↑ ↑ ↑
【典例1】 C 解析:由于同一周期中,随着原子序数的增 (5)p d 2
大,元素原子半径逐渐减小,故ⅦA族元素的原子半径不一定比 (6)二 ⅣA
上一周期ⅠA族元素的原子半径大,如r(Li)>r(S)>r(Cl);对 【课后巩固】
于核外电子排布相同的单核离子和原子,半径是不同的,它们的 1.A 2.A 3.C 4.B 5.D 6.D 7.D
半径随核电荷数的增加而减小;质子数相同的不同单核粒子,阴 8.(1)①M 9 ②H>B>Li (2)①< ②Mg
离子半径>原子半径>阳离子半径;在元素周期表中,随着原子 9.(1)520 496 419
序数的递增,原子半径呈现周期性变化,只是在同一主族中原子 (2)随着原子序数的增大,第一电离能逐渐变小 金属越活
序数越大,原子半径越大。 泼,其第一电离能越小
【典例2】 C 解析:根据题意分析可知,①的最外层电子的 (3)大于419小于738
·113·
10.(1)0.8 1.2 (2)Na H H I 变式2.C
(3)Al Si 电负性值相近 Be(OH)+2H+ Be2+2 + 【当堂训练】
2H2O、Be(OH)2+2OH- BeO2-2 +2H2O 1.C 2.A 3.A 4.C 5.B 6.(1)× (2)× (3)×
11.气态Cu失去一个电子变成结构为[Ar]3d10的Cu+,能量 (4)√ (5)√ (6)√ (7)√ (8)√ (9)√ (10)√
较低,所以Cu的第二电离能相对较大(或气态Zn失去一个电子 (11)√ (12)√ (13)×
··
变成结构为[Ar]3d104s1 的Zn+,易再失去一个电子,所以Zn的 7.N和 H原子的电子式分别为·N·和 H·,N原子最外层
·
第二电离能相对较小)
有3个未成对电子,H原子有1个未成对电子,形成共价键时每
12.(1)小 大 (2)3 (3)1 (4)Mg(OH)2 个N原子只需与3个 H原子分别形成3对共用电子对即可达到
稳定状态,共价键达到饱和,从而决定了分子中 H原子个数。
第一章测试卷 8.2.1 0.9 1.0 离子 共价
1.C 2.B 3.A 4.C 5.A 6.B 7.A 8.D 9.D 9.(1)D、E (2)C (3)A、B、C、F (4)F
10.C 11.C 12.B 13.C 14.B 15.C 【课后巩固】
16.(1)①3d14s2 ②3d24s2 ③[Ar]3d34s2 1.D 2.B 3.B 4.D 5.A 6.C 7.A 8.D
3d 4s 9.
④ (2)尊重客观事实,注重理论
↑ ↑ ↑ ↑ ↑ ↑↓ ① ② ③ ④ ⑤
适用范围,掌握特例 (3)五种元素的最高正化合价数值等于各 化学键 s-s s-p p-p pz-pz py-py
元素基态原子的最高能层s电子和次高能层d电子数目之和 类型 σ键 σ键 σ键 π键 π键
能量交错使得d电子也参与了化学反应
举例 H2 HCl Cl2 N2 N2
17.(1)①33 ②4 8 ③1s22s22p63s23p63d104s24p3
(2)①1s22s22p63s23p4 ②1s22s22p63s23p6 ③1s22s22p63s23p6 10.(1)①②③⑥⑦ (2)④⑤⑧ (3)②④⑤ (4)⑥
④1s22s22p63s23p63d8 ⑤1s22s22p63s23p63d104s24p2 (5)①③⑦⑧ (6)②④⑤⑦⑧
⑥1s22s22p63s23p63d5 第二课时 键参数———键能、键长与键角
18.(1)Si或S Fe (2)1s22s22p2 ↑↓ ↑↓ ↑↓ ↑ ↑ 【知识梳理】
1s 2s 2p 1.(1)气态分子 气态原子 kJ·mol-1 298.15K、101kPa
↑↓ ↑↓ ↑↓↑↓↑↓ ↑↓ ↑ ↑ ↑ (2)①吸收863.6kJ ②H—F H—I ③减小 减弱 难
1s 2s 2p 3s 3p 易
点燃
(3)3Fe+2O2 Fe3O4 2.(1)核间距 原子半径 原子半径 (2)大 稳定 (3)③
19.(1)M 哑 铃(纺 锤) (2)D C (3)[Ar]3d5 或 ①
1s22s22p63s23p63d5 (4)大于 小于 (5)铜失去的是全充满的 3.(1)多原子 方向性
3d10电子,镍失去的是4s1 电子 【典例精解】
20.(1)①↑↓↑↓↑↓ ↑ ↑ ②K F (2)GeCl C 【典例1】 B 解析:分子的结构是由键角、键长共同决定的,4
3p A项错误;由于F、Cl、Br、I的原子半径不同,故C—X(X=F、Cl、
第二章 分子结构与性质 Br、I)的键长不相等,C项错误;H2O分子中两个O—H的键角为
105°,D项错误。
第一节 共价键 【典例2】 A 解析:原子结合成分子时释放的能量越多,表
第一课时 共价键 示形成的共价键越牢固,含有该键的分子越稳定,分子的稳定性
【知识梳理】 与物质的物理性质无关,故A正确。
1.共用电子对 变式1.B
3.(1)连线 不变 轴对称 (2)镜像 镜面对称 不能 变式2.CO 断裂CO分子的第一个化学键所需的能量比断
牢固 断裂 (3)σ σ π σ π 开N2 分子的第一个化学键所需的能量小
【典例精解】 【当堂训练】
【典例1】 D 解析:共价单键为σ键,双键中含1个σ键和1 1.C 2.C 3.D 4.C 5.D
个π键,三键中含1个σ键和2个π键,故CH2 CH—C≡N分 6.COS为直线形结构;CO2-3 为平面正三角形结构;PCl3 为
子中含6个σ键和3个π键。 三角锥形结构。
【典例2】 B 解析:分子中存在三键的就有一个σ键又含两 7.(1)N2 CO N2O CO2 (2)SO2 O3
个π键。 8.(1)H -2S NH2 (2)CO2-、BF 、SiO2-3 3 3 、SO3 等(答案合
变式1.C 理即可) (3)[·C N·· ·]- 或[··C C· 2-·] (4)N2 CO
·114·
CN- 1 2 【典例精解】
【课后巩固】 【典例1】 C 解析:若中心原子 A上没有未用于成键的孤
1.D 2.B 3.B 4.B 5.B 电子对,则根据斥力最小的原则,当n=2时,分子的空间结构为
6.(1)184.9 (2)A 多 直线形;当n=3时,分子的空间结构为平面三角形;当n=4时,
7.原子半径、原子间形成的共用电子对数目。形成相同数目 分子的空间结构为正四面体形。
的共用电子对,原子半径越小,共价键的键长越短;原子半径相同, 【典例2】 B 解析:A.红外光谱是用于鉴定有机物中所含
形成共用电子对数目越多,键长越短。 的各种官能团的,双键、三键、羟基、羧基羰基,等等,故A错误;B.
第二节 分子的空间结构 质谱仪其实是把有机物打成很多小块,会有很多不同的分子量出
现,其中最大的那个就是该有机物的分子量,故B正确;C.核磁共第一课时 分子结构的测定 多样的分子空间结构
振氢谱是检验不同环境的 H的数量。有多少种不同的 H,就有
价层电子对互斥模型
多少个峰,各个峰的高度大致上能显示各种 H的数量比例,故C
【知识梳理】
错误;D.紫外光谱是为了了解未知物的初步的化学结构,从光谱
一、1.化学 2.晶体X射线衍射 3.(1)振动频率 化学键
信息中得到该物质的基团或者化学键产生的吸收情况,初步判断
二、
该物质的结构信息,故D错误;故选B。
分子 空间 空间填 球棍 变式1.A
化学式 结构式 键角
类型 结构 充模型 模型 变式2.C
【当堂训练】
三原 CO2 直线形 O C O 180° 1.(1)× (2)√ (3)× 2.B 3.C 4.C 5.D 6.B
子分 O 7.C 8.A
子 H2O V形 105°H H 9.(1)①4 ②2 ③3 ④4 (2)①2 ②0 ③0 ④1
H 10.
平面
CH2O H C 120° 中心原子上的 分子或离子的
四原 三角形 分子或离子 σ键电子对数
H 孤电子对数 空间结构名称
子分
子 三角 N H2Se· 2 2 V形
NH3 107°
锥形 H H H BCl3
· 3 0 平面三角形
PCl3
五原子 四面 · 3 1 三角锥形
CH4 109°28'
分子 体形 SO2
· 2 1 V形
SO2-
、 4 正四面体形 三 1.排斥 · 4 0
2.(1)σ电子对 中心原子上的孤电子对 【课后巩固】
(2)①2 3 ②a.原子的最外层电子数 中心原子的价电 1.D 2.D 3.C 4.C 5.C 6.C 7.C
子数 离子的电荷数 中心原子的价电子数 离子的电荷数(绝 8.(1)V形 (2)平面三角形 (3)三角锥形 (4)直线形
对值) (5)V形 (6)正四面体形
深度思考 9.(1)
1.(1)BCl3 的价层电子对数有3对,价层电子对空间结构为
n+m 2 4
平面三角形,分子空间结构为平面三角形。
() 理想模型 直线形 正四面体形2NF3 的价层电子对为4对,价层电子对空间结构为四面
VSEPR
体形,分子空间结构为三角锥形。 价层电子对之间的理想键角 180° 109°28'
(3)价层电子对的空间结构与分子的空间结构不一定一致, (2)CO2 属AX2E0,n+m=2,故为直线形
分子的空间结构指的是成键电子对的空间结构,不包括孤电子对 (3)
(未用于形成共价键的电子对)。二者是否一致取决于中心原子
分子或离子 SnCl2 CCl ClO-4 4
上有无孤电子对,当中心原子上无孤电子对时,二者的空间结构
立体构型 形 正四面体形 正四面体形
一致;当中心原子上有孤电子对时,二者的空间结构不一致。 V
2.不是。由于N—N—N键角都是108.1°,所以四个氮原子
围成的空间不是正四面体而是三角锥形。
·115·

第二课时 杂化轨道理论简介 【课后巩固】
【知识梳理】 1.C 2.A 3.B 4.D 5.A 6.B 7.D 8.C 9.B
1.2s 2p sp3 sp3 3.(1)1 3 正四面体形 (2)1 2 10.B
120° 平面三角形 (3)1 1 180° 直线形 11.(1)sp2 (2)sp3 (3)V形(或角形) sp3 sp2 (4)sp3
深度思考 12.
(1)杂化轨道与参与杂化的原子轨道数目相同,但能量不同。 中心原
/
s轨道与p轨道的能量不同,杂化后,形成的一组杂化轨道能量
价电 成键 孤电 杂化轨道
子杂化 轨道 分子空
相同。 物质 子对 电子 子对 电子对空 键角轨道类 夹角 间构型
( 数 对数 数 间构型2)不能。只有能量相近的原子轨道才能形成杂化轨道。2s 型
与3p不在同一能级,能量相差较大。 CO2 2 2 0 sp 直线形 180° 直线形 180°
(3)NH3 分子中 N原子的价电子排布式为2s22p3。1个2s
平面 平面
轨道和3个2p轨道经杂化后形成4个sp3 杂化轨道,其中3个杂 BF3 3 3 0 sp2 120° 120°
三角形 三角形
化轨道中各有1个未成对电子,分别与 H原子的1s轨道形成共
价键,另1个杂化轨道中是成对电子,不与 H 原子形成共价键, 正四面 正四CH4 4 4 0 sp3 109°28' 109°28'
sp3 杂化轨道为正四面体形,但由于孤电子对的排斥作用,使3个
体形 面体形
N—H的键角变小,成为三角锥形的空间结构。H2O分子中 O 正四面 原子的价电子排布式为2s22p4。1个2s轨道和3个2p轨道经杂 体形 109°28'
化后形成4个sp3 杂化轨道,其中2个杂化轨道中各有1个未成 正四面 < 三角
NH3 4 3 1 sp3 107.3°
对电子,分别与 H原子的1s轨道形成共价键,另2个杂化轨道是 体形 109°28' 锥形
成对电子,不与 H原子形成共价键,sp3 杂化轨道为正四面体形, 正四面 < 三角
3
但由于2对孤电子对的排斥作用,使2个 O—H 的键角变得更 PCl3 4 3 1 sp 100.1°体形 109°28' 锥形
小,成为V形的空间结构。
13.(1)3∶1 sp2 (2)sp3 (3)sp3 NH+ CH (4)sp24 4
(4)CH4、NH3、H2O中心原子都采取sp3 杂化,中心原子的
<
孤电子对数依次为0个、1个、2个。由于孤电子对对共用电子对
14.(1)V形 sp3 (2)sp sp3 (3)sp2 和sp3 9mol
的排斥作用使键角变小,孤电子对数越多排斥作用越大,键角越
小。比较键角时,先看中心原子杂化类型,杂化类型不同时:一般 第三节 分子结构与物质的性质
键角按sp、sp2、sp3 顺序依次减小;杂化类型相同时,中心原子孤 第一课时 共价键的极性
电子对数越多,键角越小。 【知识梳理】
【典例精解】 1.(1)不同 同种 (2)不重合 极性 不等于零 重合
【典例1】 D 解析:参与杂化的原子轨道,其能量不能相差太 等于零 (3)①非极性 ②非极性 极性
大,如1s与2s、2p的能量相差太大,不能形成杂化轨道,即只有能量 深度思考
相近的原子轨道才能参与杂化,故A、B正确;杂化轨道的电子云一头 1.烃基是推电子基团,烃基越长推电子效应越大,使羧基中
大一头小,成键时利用大的一头,可使电子云的重叠程度更大,形成 的烃基的极性越小,羧酸的酸性越弱。所以,甲酸的酸性大于乙
牢固的化学键,故C项正确;并不是所有的杂化轨道都成键,也可以 酸的,乙酸的酸性大于丙酸的……随着烃基加长,酸性的差异越
容纳孤电子对(如NH3、H2O的形成),故D项错误。 来越小。
【典例2】 B 解析:乙炔中每个碳原子价层电子对数是2且 2.(1)H2O2 分子中 H—O为极性共价键,O—O为非极性共
不含孤电子对,所以碳原子采用sp杂化,A正确,B错误;每个碳 价键。
原子中两个未杂化的2p轨道肩并肩重叠形成π键,C正确;两个 (2)不重合。H2O2 属于极性分子。
碳原子之间形成1个σ键和2个π键,D正确。 【典例精解】
变式1.D 【典例1】 B 解析:有机玻璃棒带电,靠近纯液体流后B液
变式2.A 体流发生偏离,说明液体B有极性,故A是非极性分子,B是极性
【当堂训练】 分子。
1.(1)√ (2)√ (3)× (4)× 2.D 3.D 4.C 5.B 【典例2】 B 解析:H2O2 分子的空间构型不是直线形,A
6.C 7.A 8.C 9.C 项错误;CO2 分子中3个原子在同一直线上,两个O原子在C原
10.直线形 V形 三角锥形 正四面体形 子的两侧,故该分子为由极性共价键构成的非极性分子,B项正
11.(1)三角锥形 sp3 (2)sp (3)sp3、sp2 确;BF3 分子中B原子最外层只有6个电子,所以最外层不满足8
电子稳定结构,C项错误;CH3COOH分子中甲基C原子采取sp3
·116·
杂化,羧基C原子采取sp2 杂化,D项错误。 弱是由于H—X键能依次减小;F2、Cl2、Br2、I2 的相对分子质量依
变式1.C 次增大,分子间的范德华力也依次增大,所以其熔、沸点也依次增
变式2.B 大; OH 、H—O—H、C2H5—OH中—OH 上氢原子的活
【当堂训练】
泼性依次减弱,与 O—H 的极性有关;CH3—O—CH3 的沸点比
1.(1)× (2)√ (3)× (4)× 2.B 3.A 4.B 5.C
C2H5OH的低是由于C2H5OH分子间形成氢键而增大了分子间
6.D 7.B
作用力。
8.(1)非极性 极性 (2)低 变式1.D
9.(1)AC (2)1s22s22p63s23p63d104s24p1 (3)BC G CE 变式2.A
ABD (4)> 【当堂训练】
10.(1)① (2)④⑨ (3)③ (4)②⑦ (5)⑤ (6)⑥ 1.C 2.B 3.D 4.D 5.D 6.C 7.B 8.D 9.A
(7)⑧ 10.B
【课后巩固】
11.(1)(H +3O )O—H…N(N-5 ) (NH+4 )N—H…N(N-5 )
1.D 2.B 3.C 4.A 5.D 6.C 7.A (2)H2O>CH3OH>CO2>H2 H2O与CH3OH均为极性
8.(1)H N O Al K (2)· ··N N· (3)H2O NH3 分子,H2O中氢键比甲醇多;CO2 与 H2 均为非极性分子,CO2 分
溶解 二者都是极性分子,相似相溶 子量较大、范德华力较大
9.(1)H—O—O—H (2)极性 非极性 极性 (3)H2O2 【课后巩固】
为极性分子,CS2 为非极性分子,根据“相似相溶”规律可知 H2O2 1.D 2.C 3.C 4.B 5.D 6.C 7.B 8.C 9.(1)2
难溶于CS2 (4)-1 O—O键为非极性键,O—H键为极性键, (2)2H O H O++OH-2 3 (3)x>z>y H2O分子间可以
共用电子对偏向氧 形成氢 键;H2Se的 相 对 分 子 质 量 大 于 H2S,故 沸 点:H2O>
10.(1)2 非极性 (2)三角锥形 sp3 (3)CO2 N2O H2Se>H2S,即x>z>y
(4)< 第三课时 溶解性、分子的手性
【知识梳理】
第二课时 分子间的作用力 一、1.非极性 极性 2.(1)温度 压强 (2)好 (3)大
【知识梳理】 互溶 (4)增大 增大
一、1.(2)1~2 二、1.组成 原子排列 镜像 叠合 2.手性异构体
二、1.(1)很大 氢原子 很大 (2)N、O、F 共价键 形 深度思考
成的氢键 2.(2)孤电子对 (3)原子半径 3.(1)弱 强 1.有机溶剂大多数是非极性溶剂,如CCl4、C6H6 等,但也有
4.(1)分子间 (2)分子内 5.(1)高 高 < (2)增大 (3)大 少数的极性溶剂,如酒精。
(4)小 2.(1)淡黄色的PtCl2(NH3)2 在水中溶解度小,根据相似相
深度思考 溶规律,应为非极性分子。
1.液态苯、汽油等发生汽化是物理变化,需要吸收能量克服 (2)黄绿色的PtCl2(NH3)2 在水中溶解度较大,应为极性
其分子间的相互作用力。降低氯气的温度时,氯气分子的平均动 分子。
能逐渐减小。随着温度降低,当分子靠自身的动能不足以克服分 (3)“相似相溶”规律是从分子结构的角度,通过对实验的观
子间相互作用力时,分子就会凝聚在一起,形成液体或固体。 察和研究而得出的关于物质溶解的经验规律,也会有不符合此规
2.(1)卤素单质的熔点、沸点随着相对分子质量的增大而 律的例外情况。如CO、NO等极性分子难溶于水。
升高。 3.(1)不是同一种物质,二者互为同分异构体。
(2)由分子构成的物质的熔点、沸点取决于分子间作用力的 (2)物质结构决定性质。互为手性分子的物质组成、结构几
大小,随着相对分子质量的增大,它们分子间的作用力逐渐增大, 乎完全相同,所以其化学性质几乎完全相同。
熔点、沸点逐渐升高。 4.原有机物中与—OH 相连的碳原子为手性碳原子,与 H2
【典例精解】 加成后,该碳原子连有两个乙基,不再具有手性。
【典例1】 B 解析:范德华力是分子与分子之间的一种相 【典例精解】
互作用,其实质与化学键类似,也是一种电性作用,但二者的区别 【典例1】 D 解析:I2、CCl4 都为非极性分子,而 HCl和水
是作用力的强弱不同,化学键必须是强烈的相互作用(100~600 分子都为极性分子,符合“相似相溶”原理,A正确;B项中有相同
kJ·mol-1),范德华力只有2~20kJ·mol-1,故范德华力不是化 的官能团-OH,B符合“相似相溶”原理;烃类有相似的分子结
学键;虽然范德华力非常微弱,但破坏它时也要消耗能量;范德华 构,符合“相似相溶”原理,C正确;I2 易溶于KI溶液中是因为I2+
力普遍存在于分子之间,稀有气体固态时存在范德华力。 I- I-3 ,生成易溶于水的I-3 ,D不符合要求。
【典例2】 D 解析:HF、HCl、HBr、HI的热稳定性依次减 【典例2】 C 解析:由图中的分子结构模型可以看出莽草
·117·


COOH B>Li (5)sp2、sp3 1∶9 (6)大于 Zn核外电子排布为全满
稳定结构,较难失电子酸的结构简式为 ,
故连有羟基的三个碳原子都
20.(1)sp3 杂化 (2)O>S>Se (3)34 3s23p63d10
HO OH
OH (4)强 平面三角形 (5)Fe3+的3d5 半满状态更稳定
是手性碳原子。 21.(1)V形 sp3 (2)sp2 和sp3 9NA (3)①正四面体形
变式1.A ②配位键 N ③高于 NH 33 分子间存在氢键 极性 sp
变式2.B 第三章 晶体结构与性质【当堂训练】
1.(1)√ (2)√ (3)× (4)√ (5)× (6)√ (7)√ 第一节 物质的聚集状态与晶体的常识
(8)√ 2.C 3.D 4.B 5.A 6.A 7.B 8.A 一课时 物质的聚集状态与晶体的常识
9. 【知识梳理】
蔗糖 磷酸 碘 苯 一、2.气态 液态 固态
二、1.有 周期性有序 没有 无序
水 易溶 易溶 难溶 难溶
2.(1)①自发地 多面体 ②生长的速率 ③微观空间 周
四氯化碳 难溶 难溶 易溶 易溶
期性有序 (3)熔点 (4)有序性
COOH 3.(1)熔融态 (2)气态 (3)溶质
10.(1)2 (2) H C NH 三、1.基本单元2 2.平行六面 无隙并置 (1)间隙
(2)平行 相同 (3)原子种类Cl C H
个数 几何排列 3.(1)①8
1 1
CH3 ②4 ③两 8×8+6×2
(2)2 2 8 8
【课后巩固】 四、1.X射线衍射仪 分立的斑点 明锐的衍射峰
1.D 2.A 3.D 深度思考
NH3 Cl 1.(1)最可靠的科学方法是对固体进行X射线衍射实验。根
4.(1)平面四边形 (2)Cl Pt Cl H3N Pt Cl 据结构图可知,Ⅰ中粒子呈周期性有序排列,为晶体;Ⅱ中粒子排
NH NH 列不规则,为非晶体。3 3
(3)非极性分子 极性分子 (4)黄绿色固体是由极性分子构成 (2)加热晶体Ⅰ,温度达到熔点时晶体Ⅰ开始熔化,在全部熔化以
的,而淡黄色固体是由非极性分子构成的,根据“相似相溶”原理 前,继续加热,温度基本保持不变,完全熔化后,温度才开始升高,
可知,前者在水中的溶解度大于后者 所以晶体有固定的熔点。加热非晶体Ⅱ时,温度升高到某一程度后
5.(1)①氢键、范德华力 ②CO 的分子直径小于笼状空腔 非晶体Ⅱ开始软化,流动性增强,最后变为液体。从软化到完全熔2
直径,且与 H O的结合能大于CH 化,中间经过较大的温度范围,所以非晶体无固定的熔点。2 4
(2)H O与CHCH OH之间可以形成氢键 2.不一定,如有的晶胞呈六棱柱形。由晶胞构成的晶体,其2 3 2
6.(1)③ (2)H2O分子间存在氢键 (3)CH H O 大 化学式不表示一个分子中原子的数目,只表示每个晶胞中各类原6 6 2
于 (4)SiCl>CCl>CH 子的最简整数比。4 4 4
第二章测试卷 13.(1)甲晶体中,体心X为1,顶角Y为6× ,所以8 N(X)∶
1.B 2.B 3.C 4.D 5.C 6.C 7.C 8.A 9.A
N(Y)
6
=1∶ =4∶3。
10.A 11.A 12.B 13.B 14.B 15.D 16.D 8
17.(1)1s22s22p63s23p63d10{或 [Ar]3d10} (2)3NA (2)
1
乙晶体中,体心A为1,顶角B为8× =1,所以N(A)∶
(3)sp3 sp (4)NH-2 (5)①④②⑤③
8
() 。
18.(1)①s-sσ H2 ②s-pσ HCl ③p-pσ Cl
N B =1∶1
2
④ 1pz-pzπ N2 ⑤py-pyπ N2 (2)8 2 4 有 (3)丙晶体中,C离子个数为12×4+1=4
,D离子个数为8
·· ·· ·· ·· ··
(3)Cl ·2:·Cl · ··+·Cl· →· Cl· ·· Cl·,NH3:3H×+· N · → 1 1
·· ·· ·· ·· ·· × +6× =4。
·· ·· ·· · ·· 8 2
H· · · ·× N×H,H2S:2H×+·S· →H× S×H,CO2:·C·+2·O·
·· ·· ·· · ·· (4)被6个六棱柱共用。
H 【典例精解】
·· ··
→O· · · ·· ·C· · O
·· ·· 【典例1】 B 解析:选项A,将饱和CuSO4 溶液降温可析出
19.(1)离子键、共价键 (2)平面三角形 sp2 CO2-3 胆矾,胆矾属于晶体。选项B,宝石的硬度较大,玻璃制品的硬度
(3)[CrCl2(H2O)4]Cl·2H2O 3d54s1 (4)正四面体形 H> 较小,可以根据有无划痕来鉴别。选项C,非晶体没有固定熔点。
·118·
选项 D,晶体的各向异性导致蓝宝石在不同方向上的硬度有些 【当堂训练】
差异。 1.B 2.B 3.B 4.B 5.D 6.C 7.B 8.A
【典例2】 (1)6 (2)3∶1∶1 解析:(1)由晶胞结构可知, 9.(1)12 (2)①>③>② 10.1.56g·cm-3
在每个Ti的上、下、左、右、前、后各有1个等距离的Ti,与它距离 【课后巩固】
最近且相等的Ti有6个。(2)Ca位于晶胞的体心,为一个晶胞独 1.D 2.A 3.A 4.C 5.C 6.D 7.A 8.C 9.B
占; 1Ti位于晶胞的顶点,则一个晶胞含有8× =1个Ti;O位于 10.A 11.A 12.B8 13.(1)V形(或角形) 孤电子对 (2)8 碳原子与氧原子
1
晶胞的棱上,则一个晶胞含有12× =3个O。故氧、钙、钛的粒 都为sp3 杂化,且氢键和共价键都具有方向性和饱和性(每个水4
分子与相邻的4个水分子形成氢键) (3)冰熔化为液态水时只
子个数之比为3∶1∶1。
是破坏了一部分氢键,也说明液态水中仍存在氢键
变式1.B
14.(1)CO2 分子间作用力较弱,克服分子间作用力要吸热 变式2.B
【 () ()当堂训练】 21.56 3CS2 CO2
1.(1)√ (2)× (3)× (4)√ 2.D 3.B 4.B 5.D 第二课时 共价晶体
6.D 7.A 8.B 9.C 10.CDF 【知识梳理】
11.(1)CuCl (2)2 BN (3)CoTiO 6 12 1.(1)原子 共价键 空间立体网状 (2)很高 很大 越3
【课后巩固】 小 越短 越大 越高
1.D 2.D 3.D 4.D 5.C 6.A 7.B 8.A 9.C 2.(1)109°28' 有限 松散 紧密堆积 (2)交替 1∶1
10.A 11.B (3)二氧化硅 4 4 2 2 硅氧四面体 Si—O 1∶2 单个
12.(1)非晶硅 晶体硅 (2)B (3)B 分子 巨型分子
a+b+3c 【典例精解】
13.(1)6 8 6 (2)3∶1∶1 CaTiO3 (3)602d3 【典例1】 D 解析:由题图可知每个硅原子与四个氧原子
第二节 分子晶体与共价晶体 相连,而每个氧原子与两个硅原子相连,在晶体中Si原子与 O原
第一课时 分子晶体 子的个数比为1∶2,“SiO2”仅表示石英的组成,不存在单个的
【知识梳理】 SiO2 分子,故D错误。
、 【 】 : 、一 1.分子 分子间作用力 共价键 2.(1)范德华力 分 典例2 C 解析 A B项属于无氢键存在的分子结构相
子密堆积 ()氢键 似的情况,相对分子质量大的熔点、 ; 12 2 4 沸点高 C选项属于分子结构
3.(1)非金属氢化物 (2)非金属单质 (3)非金属氧化物 相似的情况,但存在氢键的熔点、沸点高;D项属于相对分子质量
(4)酸 (5)有机物 相同,但分子结构不同的情况,支链多的熔点、沸点低。
4.(1)①氢键 范德华力 ②氢键 四面体中心 四面体顶 变式1.D
角 4 (2)①升华 ②12 (3)(从左到右,从上到下)范德华力 变式2.B
1个分子周围紧邻12个分子 范德华力、氢键 1个分子周围 【当堂训练】
紧邻4个分子 1.(1)× (2)× (3)√ (4)×
二、1.较低 较小 2.(1)越大 越高 越低 反常升高 2.B 3.D 4.C 5.D 6.A 7.C 8.D 9.B
() 2 ①√ ②√ ③√ ④√ 3.不能 全部或部分电离 () () () 3π10.13 2 212 4 38
【典例精解】 16
×100%
【典例1】 D 解析:A、
【 】
C中 HF和
课后巩固
H2O分子间含有氢键,
1.C 2.B 3.B 4.C 5.B 6.D 7.(1)3s2沸点反常;对结构相似的物质,B中沸点随相对分子质量的增加 3p
4 14
而增大;D中沸点依次降低。 (2)2Al+2OH
-+2H2O 2AlO-2 +3H2↑ (3)H2S HCl
【典例2】 (1)2 (2)H O+H O H O++OH- (3)x (4)SiO2 CO2 形成的晶体属于分子晶体,SiO2 属于共价晶体2 2 3
>z>y 水分子间存在氢键,故沸点最高;HSe比 HS的相对 () 4×40g
·mol-1
2 2 8.1 共价晶体 12 ( -10 )3 23 -1
分子质量大,范德华力大, a×10 cm ×6.02×10 mol故 H2Se的沸点高于 H2S的沸点
3
解析:(1)每个水分子与相邻的4个水分子形成氢键,故每个 () 3 22424 正四面体形 4× ρ·NA
水分子形成的氢键数为2。
(3)由于水分子之间存在氢键,故水的沸点最高;而H2S的沸 第三节 金属晶体与离子晶体
点低于 H2Se,则需用范德华力解释。 第一课时 金属键与金属晶体
变式1.C 【知识梳理】
变式2.B 一、1.原子 自由电子 2.金属阳离子 自由电子 3.金
·119·
属单质 合金 4.价电子 所有金属原子 1∶2 8 4 (3)离子键的纯粹程度 3.(1)硬度 (2)较高
二、1.自由电子 2.相对滑动 排列方式 电子气 (3)熔融态 水溶液
深度思考 深度思考
(1)不一定。如金属晶体中只有阳离子和自由电子,没有阴 1.含金属阳离子的晶体不一定是离子晶体,金属晶体也含有
离子,但有阴离子时,一定有阳离子。 金属 阳 离 子。离 子 晶 体 不 一 定 含 有 金 属 元 素,如 NH4Cl、
(2)金属离子半径的大小及所带电荷的多少。提示:由于金 NH4NO3 等铵盐。由金属元素和非金属元素组成的晶体不一定
属键是产生在自由电子(带负电)和金属阳离子(带正电)之间的 是离子晶体,如AlCl3 是分子晶体。
电性作用,所以金属阳离子电荷越多,半径越小,则金属键越强。 2.离子晶体的熔点不一定低于共价晶体,如 MgO是离子晶
由于堆积方式影响空间利用率,所以它也是金属键强弱的影响因 体,SiO2 是共价晶体,MgO的熔点高于SiO2 的熔点。离子晶体
素之一。 中除含有离子键外,还有可能含有共价键、配位键。
【典例精解】 3.NaCl晶体中阴、阳离子的配位数都是6,CsCl晶体中阴、
【典例1】 C 解析:金属的导电是因为在外加电场的作用 阳离子的配位数都是8;CaF 2+ -2 晶体中,Ca 的配位数为8,F 的配
下,电子发生定向运动实现的,而金属阳离子并没有运动,因此① 位数为4;决定离子晶体结构的因素:
错误;金属键是金属阳离子和自由电子之间存在的强烈的相互作
几何因素 晶体中正负离子的半径比
用,并非仅存在静电吸引作用,因此②错误;一般情况下,金属阳
离子所带电荷越多,半径越小,金属键越强,金属单质的熔、沸点 电荷因素 晶体中正负离子的电荷比
越高,硬度越大,Na+、Mg2+、Al3+ 三种离子的离子半径依次减 键性因素 离子键的纯粹程度
小、离子所带电荷依次增多,金属键越来越强,因此③正确;金属 【典例精解】
键的特征:一是没有方向性和饱和性,二是所有电子在三维空间 【典例1】 A 解析:NaCl为面心立方结构,每个晶胞中
运动,属于整个金属,因此④正确。
+ 1 1 1
【 】 : , Na 个数为12×4+1=4
,Cl- 的个数为8× +6× =4,则
典例2 A 解析 金属一般具有银白色的金属光泽 与金 8 2
属键密切相关。由于金属原子以最紧密堆积状态排列,内部存在 1mol氯化钠晶体中有4NA 个 Na+、4N -A 个Cl ,不存在分子,A
自由电子,所以当光辐射到它的表面上时,自由电子可以吸收所 项错误、D项正确;由NaCl晶胞结构可知,Na+ 在棱心和体心时,
有频率的光,然后很快释放出各种频率的光,这就使得绝大多数 顶点和面心为Cl-,则每个Na+周围距离相等的Cl-共有6个,B
金属呈现银灰色以至银白色光泽,故 A 项错误;B、C、D项均 项正确;醋酸钠中存在碳碳非极性键,C项正确。
正确。 【典例2】 D 解析:离子键强弱与离子所带电荷数成正比,
变式1.C 与离子半径成反比;晶格能与离子所带电荷数成正比,与离子半
变式2.C 径成反比,所以离子晶体的晶格能越大,离子键越强,A项正确;
【当堂训练】 阳离子的半径越大,其表面积越大,与阴离子接触面积越大,吸引
1.(1)× (2)√ (3)× (4)√ 2.B 3.B 4.B 5.C 的阴离子越多,B项正确;离子晶体的晶格能与离子半径成反比,
6.C 与离子所带电荷数成正比,C项正确;晶格能是气态离子形成
7.(1)分子晶体 (2)共价晶体 (3)分子晶体 (4)金属 1mol离子晶体时释放的能量,或者是将1mol离子晶体转化为
晶体 气态离子所吸收的能量,D项错误。
8.(1)自由电子 自由移动的离子 (2)C 变式1.C
【课后巩固】 变式2.C
1.D 2.D 3.B 4.D 5.A 6.A 7.B 8.A 9.B 【当堂训练】
10.C 1.(1)√ (2)× (3)× (4)× (5)× (6)× (7)×
11.4.7×10-23 4.23×10-22 6.01×1023mol-1 (8)× (9)× (10)√ 2.C 3.B 4.A 5.C 6.A 7.C
12.(1)1s22s22p63s23p63d6 或[Ar]3d6 8.B 9.C
O O O 10.(1)D 4 原子 (2)E 2 (3)A 12 (4)C 离子 8
1s 2s 2
p (2)6 Cr (3)A (5)B 分子 12 (6)石墨>金刚石>NaCl>CsCl>干冰
↑↓ ↑↓ ↑ ↑
O O 【课后巩固】
第二课时 离子晶体 1.D 2.D 3.B 4.C 5.A 6.D 7.A 8.C
【知识梳理】 ( 3d9.1) CuO 两物质均为离子化
1.阳离子 阴离子 离子键 2.异电性离子的数目 几何 ↑↓↑↓↑↓↑↓↑↓
2
电荷 键性 (1)晶体中正、负离子的半径比 (2)正、负离子 合物,且离子所带电荷数相同,而 O2- 的半径小于S2-,Cu2O的
的电荷比 6 6 化学式 8 8 电荷 个数 配位数 2∶1 晶格 能 大 (2)Ca2+ [··C C· 2-·] 面 心 立 方 最 密 8
·120·

3
() 2 272
2.(1)
3FeC 2× d·N ×10
10
A A B C
第三课时 过渡晶体与混合型晶体
晶体类型 离子晶体 共价晶体 分子晶体 金属晶体
【知识梳理】
( ) 、 、
1.(1)分子 共价 金属 离子 (2)②Na2O Al2O3
实例化学式 NH4 2SNH4HS Si O2 O3 Na
SiO 2.(2)①平面六元并环 ②范德华力 (3)混合晶体 (2)H++S2-2 HS-(或 H++HS- H2S↑) (3)2C
(4)很高 易 +SiO2 2CO↑+Si
深度思考 3.(1)共价 共价键 (2)①②③④ (3)HF分子间形成氢
1.由于碳原子的p轨道相互平行且相互重叠,p轨道中的电 键 (4)②④ (5)D组晶体都为离子晶体,且r(Na+)子可在整个碳原子平面中运动,所以石墨具有导电性。 2.不一样,金刚石中的“棍”表示的是C—C共价键,而干冰中 越小,熔点越高 4.(1)B (2)分子 30 (3)1.204×1024 6
的“棍”表示分子间作用力,分子晶体中多数含有化学键(如CO2 (4)2
中的C O键),少数则无(如稀有气体形成的晶体)。 第四节 配合物与超分子
3.(1)立方晶胞中,顶点、棱边、面心依次被8、4、2个晶胞
一课时 配合物与超分子
共用。
【知识梳理】
(2)六棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被6、3、
一、1.(1)孤电子对 空轨道 2.(1)配位键 (2)
4、2个晶胞共用。
【典例精解】 实验操作 实验现象 有关离子方程式
【典例1】 D 解析:题干中所列举的6种钾石墨不是有机 滴加氨水后,试
高分子化合物,A项错误;钾石墨中碳原子的杂化方式是sp2 杂 管中首先出现蓝
Cu2++2NH3·H2O
化,B 项 错 误;图 中 外 围 的 六 个 钾 原 子 连 起 来,如 图 色沉淀,氨水过
Cu(OH)2↓+
量后沉淀逐渐溶
2NH+4 、Cu(OH)2+
解,滴加乙醇后
,得到的六边形中含24个碳,而顶点每个 K只有 4NH [Cu(NH)]2+3 34
析出深蓝色晶体
-
[Cu( )]
+2OH
NH3 4 SO4
1 ·
属于这个六边形,中心的K完全属于该六边形,即含K的数目 H2O3
1
为6× +1=3,它所表示的是C8K,C项错误;最近的两个K原3
Fe3+ +3SCN-
子之间的距离为石墨中C—C键键长的2 3倍,故D正确。 溶液变血红色
Fe(SCN)3
【典例2】 B 石墨属于混合型晶体,A项错误;SiO2 属于过
渡晶体,但一般按共价晶体来处理,B项正确;大多数含有离子键
的晶体不是典型的离子晶体,而是过渡晶体,C项错误;Na2O晶
体中离子键的百分数为62%,D项错误。
白色的
变式1.A AgCl

AgCl+ 2NH3
淀消失,得到澄
变式2.A [Ag(NH3)2]Cl
【 】 清的无色溶液当堂训练
1.C 2.C 3.C 4.C 5.B 6.C 7.D
8.分 子 共价 分子 离子 9.AE 孤电子对 空轨道 共用氮原子提供的孤电子对
【课后巩固】 é NH ù2+3
1.Ⅰ.(1)四氯化硅 分子晶体 (2)锑 金属晶体 (3)氖 ê ê ↓
ú
ú
分子晶体 (4)硼 共 价 晶 体 (5)石 墨 混 合 型 晶 体 ê H3N→Cu←NH3ú
ê ú
Ⅱ.(1)③④①②⑥⑤ ê ↑ ú
(2)结构相似的分子晶体的相对分子质量越大,分子间作用 ê NH ú3
力(或范德华力)越强,熔化所需的能量越多,故熔点:Si60>N60> (3)①提供空轨道接受孤电子对 ②提供孤电子对 直接同
C60;而破坏分子需断开化学键,元素电负性越强其形成的化学键 中心原子配位 ③配位键 6
越稳定,断键时所需能量越多,故破坏分子需要的能量多少顺序 二、1.分子 分子间相互作用 2.(3)分子识别 自组装
为N60>C60>Si60
·121·
深度思考 【当堂训练】
1.因为氨水呈弱碱性,滴入 AgNO3 溶液中,会形成 AgOH 1.(1)√ (2)√ (3)√ (4)× 2.D 3.C 4.A 5.D
白 色 沉 淀,继 续 滴 加 氨 水 时,NH3 分 子 与 Ag+ 形 成 6.C 7.A 8.A 9.C 10.A
[Ag(NH3)2]+配合离子,配合离子很稳定,会使 AgOH 逐渐溶 11.(1)配位键 N (2)3CaF +Al
3+
2 3Ca2++AlF3-6
解,反应过程如下:Ag+ +NH3·H2O AgOH↓+NH+4 , (3)O
AgOH+2NH3·H2O [Ag(NH3)2]++OH-+2H2O。 【课后巩固】
2.(1)相同。NH+ 可看成 NH 分子结合1个 H+ 后形成 1.B 2.B 3.B 4.D 5.B 6.B 7.A4 3
的,在NH 中中心原子氮采取s3 杂化,孤电子对占据一个轨道, 8.
(1)洪特规则 平面三角形p
三角锥形 (2)①K ②Li+
3
, 半径比 的空腔小很多,不易与空腔内 原子的孤电子对作用3个未成键电子占据另3个杂化轨道 分别结合3个 H原子形成 Y O
, , , 形成稳定结构 四面体形 冠醚可溶于烯烃,进入3个σ键 由于孤电子对的排斥 所以空间结构为三角锥形 键角 ③ⅰ. < ⅱ.
冠醚中的 + 因静电作用将 - 带 入 烯 烃 中,增 大 烯 烃 与
压缩至107°。但当有 H+时,N原子的孤电子对会进入 H+ 的空 K MnO4
, +, , MnO
-
4 接触机会,提升氧化效果轨道 以配位键形成NH4 这样 N原子就不再存在孤电子对 键
(
, + , — 9.1
)1s22s22p63s23p63d5(或[Ar]3d5) (2)K (3)离子键、角恢复至109°28' 故 NH4 为正四面体形 4个 N H 键完全一
共价键、配位键 (4)sp2, 7NA致 配位键与普通共价键形成过程不同,但性质相同。
(2)[Cu(NH )]SO 中含有的化学键有离子键、共价键和配 第三章测试卷3 4 4
位键。 1.C 2.B 3.B 4.A 5.C 6.B 7.A 8.B 9.B
(3)N原子提供孤电子对,B原子提供空轨道,NH3·BF3 的 10.C 11.A 12.B
2 2 4 2 2 2
H F 13.(1)1s2s2p 1s2s2p (2)CO2 分子 极性 非极
性 正四面体形 (3)SiO2 原子 高结构式可表示为 H N→B F 。
14.(1)② (2)①③ ③ sp3 (3)⑤⑦
H F H
【典例精解】 ·· ··(4)[H· N·· ·H]+[··Cl· -·]
·· ··
【典例1】 (1)16NA (2)C 解析:(1)[Zn(NH3)4]Cl2 中 H
[Zn(NH3)4]2+与Cl-形成离子键,而1个[Zn(NH3)4]2+ 中含有 15.(1) 或 [Ne]
4个N→Zn键(配位键)和12个N—H键,共16个σ键,故1mol
(2)3d84s2 (3)⑩ (4)金属 面心立方最密
该配合物中含有16molσ键,即16NA。
堆积 12 (5)Al3+ (7)铜失去的是全充满的3d10电子,镍失去的是4s1 电子
该配合物中氮原子提供孤电子对,所以 NH3 是配体,故B错误;
()
[Zn(NH -3)4]Cl2 中外界是Cl ,
8 MgNi3C
内界是[Zn(NH )]2+3 4 ,故C正
16.(1)①< ②分子 (2)①直线 2 (3)①2s22p6 3
确;该配合物中,
②sp
锌离子提供空轨道,氮原子提供孤电子对,所以
杂化 乙二胺分子间可以形成氢键,三甲胺分子间不能形成氢键
Zn2+和NH3 以配位键结合,属于特殊共价键,不属于离子键,故
③EF
D错误。
17.(1)3d24s2 (2)O>N>C>H (3)分子晶体 配位键
【典例2】 A 解析:A项,a中N原子有3对σ键电子对,含
M 30
有1个孤电子对,b中N原子有4对σ键电子对,没有孤电子对, (4)①3 ②BC ③LaNi5 N ·a3×10A
则a、b中N原子均采取sp3 杂化,正确;B项,b为配离子,Ca2+的 18.(1)第二周期 第 VA 族 (2)2NA 或1.204×1024
配位数为6,错误;C项,a不是配合物,错误;D项,钙离子与 N、O (3)sp2杂化 (4)1s22s22p63s13p23d63d104s1 或[Ar]3d104s1
之间形成配位键,其他原子之间形成共价键,不含离子键,错误。 3
4×62
变式1.B Cu2O (5) ρ×NA
变式2.(1)acd (2)[CoBr(NH3)5]SO4 点燃19.(1)Co Ⅷ 3d54s1 (2)2Fe+3Cl2 2FeCl3
[Co(SO4)(NH3)5]Br 生成淡黄色沉淀 (3)1∶2 (4)+3 6 配位键、共价键 sp3、sp2
20.(1)3.03×10-10m (2)正八面体 (3)0.88 (4)Ni0.64Ni0.24O
·122·