6.2.1频率的稳定性
导学案
学习目标
1. 通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率。
2. 通过对实际问题的分析,进一步体会“数学就在我们身边”,发展学生的应用数学的能力。
重点:通过试验让学生理解当试验次数较大时,实验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小。
难点:大量重复试验得到频率的稳定值的分析。
一、自学释疑
计算事件发生的频率,应该注意些什么?
二、合作探究
探究点一:频率的稳定性
活动一:做一做
参照教材提供的任意掷一枚图钉,出现钉尖朝上和钉尖朝下两种结果,让同学猜想钉尖朝上和钉尖朝下的可能性是否相同的情境,让学生来做做试验。
请同学们拿出准备好的图钉:
(1)两人一组做20次掷图钉游戏,并将数据记录在下表中:
试验总次数
钉尖朝上次数
钉尖朝下次数
钉尖朝上频率(钉尖朝上次数/试验总次数)
钉尖朝下频率(钉尖朝下次数/试验总次数)
介绍频率定义:在n次重复试验中,不确定事件A发生了m次,则比值 称为事件发生的频率。
(2)累计全班同学的试验结果,并将试验数据汇总填入下表:
试验总次数n 20 40 80 120 160 200 240 280 320 360 400
钉尖朝上次数m
钉尖朝上频率m/n
操作交流,探究新知
活动内容:(1)请同学们根据已填的表格,完成下面的折线统计图
(2)小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图像,钉尖朝上的频率的变化有什么规律
结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性
活动二:议一议
(1)通过上面的试验,你认为钉尖朝上和钉尖朝下的可能性一样大吗?你是怎样想的?
(2)小明和小丽一起做了1000次掷图钉的试验,其中有640次钉尖朝上。据此,他们认为钉尖朝上的可能性比钉尖朝下的可能性大。你同意他们的说法吗?
频率的稳定性是由瑞士数学家雅布·伯努利(1654-1705)最早阐明的,他还提出了由频率可以估计事件发生的可能性大小。
例:某林业部门要考查某种幼树在一定条件的移植成活率,应采用什么具体做法
在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率.如果随着移植棵数n的越来越大,频率越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值.
(1)下表是统计试验中的部分数据,请补充完整:
移植总数(n) 成活数(m) 成活的频率
10 50 270 400 750 1500 3500 7000 9000 14000 8 47 235 369 662 1335 3203 6335 8073 12628 0.80 ________ 0.871 ________ ________ 0.890 0.915 ________ ________ 0.902
(2)由下表可以发现,幼树移植成活的频率在 左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.
(3)林业部门种植了该幼树1000棵,估计能成活 _______棵.
(4)我们学校需种植这样的树苗500棵来绿化校 园,则至少向林业部门购买约_______棵.
总结归纳:
(1)频率定义:在n次重复试验中,不确定事件A发生了m次,则比值 称为事件发生的频率。
(2)在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有 。
三、随堂检测
1. 小胡将一枚质地均匀的硬币抛掷了10次,正面朝上的情况出现了6次,若用A表示正面朝上这一事件,则事件A发生的( )
A. 频率是0.4 B. 频率是0.6
C. 频率是6 D. 频率接近0.6
2. 小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:
通话时间x/min 0频数(通话次数) 20 16 9 5
则通话时间不超过15 min的频率为( )
A. 0.1 B. 0.4 C. 0.5 D. 0.9
3.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,
于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下:
(1)随着调查次数的增加,红色的频率如何变化?
(2)你能估计调查到10000名同学时,红色的频率是多少吗?
(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?
我的收获
__________________________________________________________________________________________________________________________________________
参考答案
随堂检测
1. B
2. D
3.(1) 随着调查次数的增加,红色的频率基本稳定在40%左右.
(2) 估计调查到10000名同学时,红色的频率大约仍是40%左右.
(3) 红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:2:1 .