9.2用样本估计总体 课时作业
一、单选题
1.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:
①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;
②可以估计不足的大学生使用主要玩游戏;
③可以估计使用主要找人聊天的大学生超过总数的.
其中正确的个数为( )
A. B. C. D.
2.习近平总书记强调:“一个忘记来路的民族是没有出路的民族,一个忘记初心的政党必定是没有未来的政党”某学校利用学习强国APP安排教职工(共人)在线学习党史知识.其教职工年龄情况和每周在线学习时长达小时的情况分别如图1和图2所示,则下列说法正确的是( )
图1 图2
A.该学校老年教职工在线学习党史时长达小时的人数最多
B.该学校青年教职工在线学习党史时长达小时的人数最多
C.该学校老年教职工在线学习党史时长达小时和青年教职工在线学习党史时长达小时的人数之和与中年教职工在线学习党史时长达小时的人数相等
D.该学校在线学习党史时长达小时的人数占总人数的
3.新能源汽车产业是我国经济发展的重要支柱,为了了解新能源汽车的质量情况,有关部门分别随机抽查了型新能源汽车与型新能源汽车各10个品牌.得到相关指标的综合评价得分(百分制)的茎叶图如图所示,则从茎叶图可得出正确的信息为(80分及以上为优秀)( ).
①型新能源汽车与型汽车得分的优秀率相同.
②型新能源汽车得分与型新能源汽车得分的中位数相同.
③型新能源汽车得分的方差比型新能源汽车得分的方差大.
④型新能源汽车得分与型新能源汽车得分的平均分相同.
A.①② B.①③ C.②④ D.③④
4.某班级统计一次数学测试后的成绩,并制成了如下的频率分布表,根据该表估计该班级的数学测试平均分为
分组
人数
频率
A. B. C. D.
5.学校田径运动会有 15名运动员参加跳高比赛,预赛成绩各不相同,取前 8 名参加决赛,某同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道这15 名运动员成绩的( )
A.平均数 B.众数 C.中位数 D.方差
6.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有( )
A.a>b>c B.a>c>b
C.c>a>b D.c>b>a
二、多选题
7.某人射箭10次,射中的环数依次为:8,7,8,9,7,6,9,8,10,8关于这组数据,下列说法正确的是( )
A.这组数据的众数是8 B.这组数据的平均数是8
C.这组数据的中位数是8 D.这组数据的方差是
8.某校拟从甲、乙两名同学中选一人参加疫情知识问答竞赛,于是抽取了甲、乙两人最近同时参加校内竞赛的十次成绩,将统计情况绘制成如图所示的折线图.根据该折线图,下面结论正确的是( )
A.甲从第二次到第三次成绩的上升速率要小于乙从第六次到第七次的上升速率
B.乙的成绩的极差为8
C.甲的成绩的中位数为7
D.甲的成绩的方差大于乙的成绩的方差
三、填空题
9.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,1■,那么这组数据的方差最大时,被污损的两个数据分别是______.
10.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是,样本数据分组为,,,,,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是___________.
11.某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,,,,,,得到的频率分布直方图如图所示,则下列说法中正确的是________(填序号).
①;
②这名学生中数学成绩在分以下的人数为;
③这名学生数学成绩的中位数约为;
④这名学生数学成绩的平均数为.
12.若样本数据、、、的平均数为,则数据、、、,的平均数为_____.
四、解答题
13.某中学(含初高中6个年级)随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.
(Ⅰ)求的值及样本中男生身高在(单位:cm)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)根据频率分布直方图估计该校男生身高的85%分位数.
14.某公司员工年收入的频率分布直方图如下:
(1)估计该公司员工年收入的众数、中位数、平均数(同一组中的数据用该组区间的中点值为代表);
(2)假设你到人才市场找工作,该公司招聘人员告诉你,“我们公司员工的年平均收入超过13万元”,你认为招聘人员对该公司员工年收入的描述是否能客观反映该公司员工的年收入实际情况?请根据(1)中的计算结果说明.
15.某校食堂按月订购一种螺蛳粉,每天进货量相同,进货成本每碗6元,售价每碗10元,未售出的螺蛳粉降价处理,以每碗5元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为200碗;如果最高气温位于区间,需求量为300碗;如果最高气温低于20,需求量为500碗.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
天数 4 7 25 36 16 2
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种螺蛳粉一天的需求量不超过300碗的概率;
(2)设六月份一天销售这种螺蛳粉的利润为(单位:元),当六月份这种螺蛳粉一天的进货量为450碗时,写出的所有可能值,并估计的平均值(即加权平均数).
16.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到频数分布表和频率分布直方图如下.
组号 分组 频数
1 [0,2) 6
2 [2,4) 8
3 [4,6) 17
4 [6,8) 22
5 [8,10) 25
6 [10,12) 12
7 [12,14) 6
8 [14,16) 2
9 [16,18) 2
合计 100
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;
(2)求频率分布直方图中的a,b的值.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.C
2.D
3.B
4.C
5.C
6.D
7.ABCD
8.BC
9.19,1
10.90
11.②③
12.
13.(Ⅰ),4;(Ⅱ)171.5cm;(Ⅲ)183 cm.
14.(1)众数为10万元,中位数约为10.5万元,平均数约为13.15万元;(2)不能.
15.(1);(2)(元),(元),(元),(元).
16.(1)0.9;(2),.
答案第1页,共2页
答案第1页,共2页