2022-2023学年华东师大版八年级数学上册《第13章全等三角形》
单元综合测试题(附答案)
一.选择题(共8小题,满分40分)
1.如图,∠1=∠2,添加下列条件仍不能判定△ABD≌△ACD的是( )
A.∠3=∠4 B.BD=CD C.∠B=∠C D.AB=AC
2.如图,为测量池塘两端AB的距离,学校课外实践小组在池塘旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.其依据是( )
A.SSS B.SAS C.ASA D.AAS
3.如图,在△ABC中,F是高AD、BE的交点,∠ABD=45°,BC=7,CD=3,则线段AF的长度为( )
A.2 B.1 C.4 D.3
4.一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是( )
A.x>5 B.x<7 C.4<x<14 D.2<x<7
5.如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,∠FAC=40°,则∠BFE=( )
A.35° B.40° C.45° D.50°
6.如图,点D,E分别为△ABC的边AB,AC上的点,连接DE并延长至F,使EF=DE,连接FC.若FC∥AB,AB=5,CF=3,则BD的长等于( )
A.1 B.2 C.3 D.5
7.如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )
A.∠ADC=∠AEB B.CD∥AB C.DE=GE D.CD=BE
8.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是( )
A.5个 B.6个 C.7个 D.8个
二.填空题(共8小题,满分40分)
9.如图,在△ABC中,AB=AC,D为BC上的一点,∠BAD=28°,在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE,DE,DE交AC于点O,若CE∥AB,则∠DOC的度数为 .
10.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为 .
11.如图,线段AB,CD相交于点O,AO=BO,添加一个条件,能使△AOC≌△BOD,所添加的条件的是 .
12.如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP= 时,以点A,P,Q为顶点的三角形与△ABC全等.
13.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第 块去,这利用了三角形全等中的 原理.
14.如图,在△ACD中,∠CAD=90°,AC=6,AD=8,AB∥CD,E是CD上一点,BE交AD于点F,若EF=BF,则图中阴影部分的面积为 .
15.如图,已知AE=BE,DE是AB的垂线,F为DE上一点,BF=11cm,CF=3cm,则AC= .
16.如图,C为线段AB上一动点(不与点A、B重合),在AB的上方分别作△ACD和△BCE,且AC=DC,BC=EC,∠ACD=∠BCE,AE、BD交于点P.有下列结论:①AE=DB;②∠APB=2∠ADC;③当AC=BC时,PC⊥AB;④PC平分∠APB.其中正确的是 .(把你认为正确结论的序号都填上)
三.解答题(共5小题,满分40分)
17.如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=CE.
(1)求证:△ABC≌△DEF;
(2)若∠A=63°,求∠AGF的度数.
18.如图,△ABC是等边三角形,点D、E分别是BC、CA的延长线上的点,且CD=AE,DA的延长线交BE于点F.
(1)求证:AD=BE;
(2)求∠BFD的度数.
19.如图,在四边形ABCD中,AD∥BC,∠A=90°,BE=AD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
20.如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,
(1)若∠BAC=60°,求∠ADB的度数;
(2)求证:BE=(AC﹣AB).
21.如图,在△ABC中,∠B=∠C,点D是边BC上一点,CD=AB,点E在边AC上.
(1)若∠ADE=∠B,求证:
①∠BAD=∠CDE;
②BD=CE;
(2)若BD=CE,∠BAC=70°,求∠ADE的度数.
参考答案
一.选择题(共8小题,满分40分)
1.解:A.∠1=∠2,AD=AD,∠3=∠4,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项不符合题意;
B.BD=CD,AD=AD,∠1=∠2,不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项符合题意;
C.∠B=∠C,∠1=∠2,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD≌△ACD,故本选项不符合题意;
D.AB=AC,∠1=∠2,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项不符合题意;
故选:B.
2.解:在△ABC与△ADC中,
.
∴△ABC≌△ADC(SAS).
故选:B.
3.解:∵AD⊥BC,∠ABD=45°,
∴∠BAD=∠ABD=45°,
∴AD=BD,
∵BC=7,CD=3,
∴BD=AD=4,
∵∠BEC=∠ADC=90°,
∴∠C+∠DAC=∠C+∠EBC=90°,
∴∠EBC=∠DAC,
在△ACD和△BFD中,
,
∴△ACD≌△BFD(ASA),
∴DF=CD=3,
∴AF=AD﹣DF=1,
故选:B.
4.解:如图,AB=5,AC=9,AD为BC边的中线,
延长AD到E,使AD=DE,连接BE,CE,
∵AD=x,
∴AE=2x,
在△BDE与△CDA中,
,
∴△ADC≌△EDB(SAS),
∴BE=AC=9,
在△ABE中,AB+BE>AE,BE﹣AB<AE,
即5+9>2x,9﹣5<2x,
∴2<x<7,
故选:D.
5.解:在△ABC和△AEF中,
,
∴△ABC≌△AEF(SAS),
∴∠C=∠AFE,
∵∠AFB=∠FAC+∠C=∠AFE+∠EFB,
∴∠BFE=∠FAC=40°,
故选:B.
6.解:∵FC∥AB,
∴∠DAE=∠FCE,
在△DAE与△FCE中,
,
∴△DAE≌△FCE(AAS),
∴AD=CF,
∵CF=3,
∴AD=CF=3,
又∵AB=5,
∴BD=AB﹣AD=5﹣3=2,
故选:B.
7.解:A.∵∠CAB=∠DAE=36°,
∴∠CAB﹣∠CAE=∠DAE﹣∠CAE,即∠DAC=∠EAB,
在△DAC和△EAB中,
,
∴△DAC≌△EAB(SAS),
∴∠ADC=∠AEB,故A选项不符合题意;
CD=BE,故D选项不符合题意;
B.∵△DAC≌△EAB,
∴AC=AB,
∴∠ACB=∠ABC,
∵∠CAB=∠DAE=36°,
∴∠ACB=∠ABC=(180°﹣36°)÷2=72°,
∵BE平分∠ABC,
∴∠ABE=∠CBE=36°,
∴∠ACD=∠ABE=36,
∵∠DCA=∠CAB=36°,
∴CD∥AB(内错角相等,两直线平行),
故B选项不符合题意;
C.根据已知条件无法证明DE=GE,故C选项符合题意.
故选:C.
8.解:
以BC为公共边的三角形有△BCR,△BCT,△BCY,
以AC为公共边的三角形有△AEC,△AQC,△AWC,
以AB为公共边的三角形有△ABS,
3+3+1=7,
故选:C.
二.填空题(共8小题,满分40分)
9.解:∵∠DAE=∠BAC,
∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
∴∠B=∠ACE,
∵CE∥AB,
∴∠B+∠BCE=180°,
∴∠B+∠ACB+∠ACE=180°,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠ACB=∠ACE=60°,
∴△ABC是等边三角形,
∴∠DAE=∠BAC=60°,
∴△ADE是等边三角形,
∴∠ADE=60°,
∵∠BAD=28°,
∴∠OAD=60°﹣28°=32°,
∴∠DOC=∠OAD+∠ADE=32°+60°=92°.
故答案为:92°.
10.解:∵△ABC≌△ADE,
∴∠D=∠B=40°,
∴∠BED=∠A+∠D=60°+40°=100°,
故答案为:100°.
11.解:添加CO=DO,
在△AOC和△BOD中,
∴△AOC≌△BOD(SAS),
故答案为:CO=DO(答案不唯一).
12.解:∵AX⊥AC,
∴∠PAQ=90°,
∴∠C=∠PAQ=90°,
分两种情况:
①当AP=BC=10时,
在Rt△ABC和Rt△QPA中,
,
∴Rt△ABC≌Rt△QPA(HL);
②当AP=CA=20时,
在△ABC和△PQA中,
,
∴Rt△ABC≌Rt△PQA(HL);
综上所述:当点P运动到AP=10或20时,△ABC与△APQ全等;
故答案为:10或20.
13.解:由图可知,带第2块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.
故答案为:2;ASA.
14.解:∵AB∥CD,
∴∠BAD=∠D,
在△BAF和△EDF中,
,
∴△BAF≌△EDF(ASA),
∴S△BAF=S△DEF,
∴图中阴影部分的面积=S四边形ACEF+S△AFB=S△ACD===24.
故答案为:24.
15.解:∵AE=BE,DE是AB的垂线,
∴AD=BD,∠ADE=∠BDE=90°,
在△ADF和△BDF中,
,
∴△ADF≌△BDF(SAS),
∴AF=BF,
∴AC=AF+CF=BF+CF,
∵BF=11cm,CF=3cm,
∴AC=14cm,
故答案为:14cm.
16.解:∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=DB,故①正确;
∵△ACE≌△DCB,
∴∠CAE=∠CDB,
∵∠ACD=∠CDB+∠CBD,
∴∠ACD=∠CAE+∠CBD,
∵∠CAE+∠CBD+∠APB=180°,
∴∠ACD+∠APB=180°,
∵AC=DC,
∴∠CAD=∠ADC,
∵∠ACD+∠CAD+∠ADC=180°,
∴∠ACD+2∠ADC=180°,
∴∠APB=2∠ADC,故②正确;
∵AC=BC,AC=DC,BC=EC,
∴AC=BC=DC=EC,
∴∠CAE=∠CBD,
∴PA=PB,
∵AC=BC,
∴PC⊥AB,故③正确;
如图,连接PC,过点C作CG⊥AE于G,CH⊥BD于H,
∵△ACE≌△DCB,
∴S△ACE=S△DCB,AE=BD,
∴×AE×CG=×DB×CH,
∴CG=CH,
∵CG⊥AE,CH⊥BD,
∴PC平分∠APB,故④正确,
故答案为:①②③④.
三.解答题(共5小题,满分40分)
17.(1)证明:∵BF=CE,
∴BF+CF=CE+CF,
即BC=EF.
∵AB⊥BE,DE⊥BE
∴∠B=∠E=90°.
在Rt△ABC和Rt△DEF中,
,
∴Rt△ABC≌Rt△DEF(HL);
(2)解:∵△ABC≌△DEF,
∴∠ACB=∠DFE.
∵∠A=63°,
∴∠ACB=90°﹣63°=27°,
∴∠DFE=27°.
∵∠AGF=∠ACB+∠DFE,
∴∠AGF=27°+27°=54°.
18.解:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ACB,
∵∠BAE+∠BAC=180°,∠ACD+∠ACB=180°
∴∠BAE=∠ACD,
在△BAE与△ACD中,
,
∴△BAE≌△ACD(SAS),
∴AD=BE;
(2)∵△BAE≌△ACD,
∴∠DAC=∠EBA,
∵∠DAC=∠EAF,
∴∠EAF=∠EBA,
∵△ABC是等边三角形,
∴∠BAC=60°,
∴∠BAE=120°,
即∠EAF+∠BAF=120°,
∴∠EBA+∠BAF=120°
∴∠BFD=60°.
19.(1)证明:∵AD∥BC,
∴∠ADB=∠EBC.
∵CE⊥BD,∠A=90°,
∴∠A=∠CEB,
在△ABD和△ECB中,
∴△ABD≌△ECB(AAS);
(2)解:∵△ABD≌△ECB,
∴BC=BD,
∵∠DBC=50°,
∴∠EDC=(180°﹣50°)=65°,
又∵CE⊥BD,
∴∠CED=90°,
∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.
20.(1)解:如图:延长BE交AC于点F,
∵BF⊥AD,
∴∠AEB=∠AEF.
∵AD平分∠BAC,
∴∠BAE=∠FAE,
在△ABE和△AFE中,
,
∴△ABE≌△AFE(ASA),
∴∠ABF=∠AFB,AB=AF,BE=EF.
∵∠C+∠CBF=∠AFB=∠ABF,
∠ABF+∠CBF=∠ABC=3∠C,
∴∠C+2∠CBF=3∠C,
∴∠CBF=∠C.
∵∠BAC=60°,
∴△ABF是等边三角形,
∴∠AFB=60°,
∴∠CBF=∠C=30°.
∴∠ADB=90°﹣30°=60°;
(2)证明:由(1)知:∠CBF=∠C.
∴BF=CF,
∴BE=BF=CF.
∵CF=AC﹣AF=AC﹣AB,
∴BE=(AC﹣AB).
21.(1)证明:①∵在△ABC中,∠BAD+∠B+∠ADB=180°,
∴∠BAD=180°﹣∠B﹣∠ADB,
又∵∠CDE=180°﹣∠ADE﹣∠ADB,
且∠ADE=∠B,
∴∠BAD=∠CDE;
②由①得:∠BAD=∠CDE,
在△ABD与△DCE中,
,
∴△ABD≌△DCE(ASA),
∴BD=CE;
(2)解:在△ABD与△DCE中,
,
∴△ABD≌△DCE(SAS),
∴∠BAD=∠CDE,
又∵∠ADE=180°﹣∠CDE﹣∠ADB,
∴∠ADE=180°﹣∠BAD﹣∠ADB=∠B,
在△ABC中,∠BAC=70°,∠B=∠C,
∴∠B=∠C=(180°﹣∠BAC)=×110°=55°,
∴∠ADE=55°.